【題目】在平面直角坐標(biāo)系中,點(diǎn)B、A分別在x軸和y軸上,連接AB,已知∠ABO=60°,BC平分∠ABO交y軸于點(diǎn)C,且BC=8.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC方向以每秒2個(gè)長(zhǎng)度單位的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥y軸于Q,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,試用t表示線段CQ的長(zhǎng);
(3)點(diǎn)D是點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn),在(2)的條件下,連接OP、DQ、CD,當(dāng) 時(shí),求t的值.
【答案】
(1)
解:∵∠ABO=60°,BC是角平分線,
∴∠ABC=∠CBO=30°,
在直角△BOC中,OC=BCsin∠CBO= BC=4,即C的坐標(biāo)是(0,4).
又∵直角△ABO中,∠BAO=90°﹣∠ABO=90°﹣60°=30°,
∴∠BAO=∠ABC=30°,
∴AC=BC=8,
∴OA=8+4=12,
∴A的坐標(biāo)是(0,12)
(2)
解:當(dāng)0≤t≤4時(shí),如圖1,P在BC上,BP=2t,則PC=8﹣2t,
在直角△PCQ中,∠CPQ=∠CBO=30°,
則CQ= PC= (8﹣2t)=4﹣t;
當(dāng)t>4時(shí),P在BC的延長(zhǎng)線上,如圖2.
BP=2t,則CP=2t﹣8,
在直角△PCQ中,∠CPQ=30°,CQ= PC= (2t﹣8)=4﹣4
(3)
解:在直角△BOC中,OB=BCcos∠CBO=8× =4 ,則B的坐標(biāo)是(﹣4 ,0),則D的坐標(biāo)是(4 ,0).
當(dāng)0≤t≤4時(shí),如圖1,P在線段BC上,作PF⊥OB于點(diǎn)F.則PF= BP=t,則S△BOP= ×4 t=2 t,
CQ=4﹣t,則S△DCQ= (4﹣t)×4 =﹣2 t+8 ,
當(dāng) 時(shí),2 t= (﹣2 t+8 ),解得:t= ;
當(dāng)t>4時(shí)P在BC的延長(zhǎng)線上,如圖2.作PF⊥OB于點(diǎn)F.則PF= BP=t,則S△BOP= ×4 t=2 t,
CQ=4﹣t,則S△DCQ= (t﹣4)×4 =2 t﹣8 ,
當(dāng) 時(shí),2 t= (2 t﹣8 ),解得:t=9.
總之,t= 或9.
【解析】(1)首先在直角△BOC中,利用三角函數(shù)求得OC的長(zhǎng),然后證明BC=AC,則求得OA的長(zhǎng),得到A的坐標(biāo);(2)分成P在線段BC上和在BC的延長(zhǎng)線上兩種情況進(jìn)行討論,利用三角函數(shù)求解;(3)同(2)分成兩種情況討論,根據(jù)三角形面積公式利用t表示出△BPO和△DCQ的面積,然后解方程即可求解.
【考點(diǎn)精析】掌握銳角三角函數(shù)的定義是解答本題的根本,需要知道銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈市某花卉種植基地欲購(gòu)進(jìn)甲、乙兩種君子蘭進(jìn)行培育,若購(gòu)進(jìn)甲種2株,乙種3株,則共需要成本1700元;若購(gòu)進(jìn)甲種3株,乙種1株,則共需要成本1500元.
(1)求甲乙兩種君子蘭每株成本分別為多少元?
(2)該種植基地決定在成本不超過(guò)30000元的前提下購(gòu)進(jìn)甲、乙兩種君子蘭,若購(gòu)進(jìn)乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購(gòu)進(jìn)甲種君子蘭多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FGFD.(大小關(guān)系)
(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.
(3)在圖②中,當(dāng)AB=8,BE=3時(shí),利用探究的結(jié)論,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知代數(shù)式x+2y的值是3,則代數(shù)式2x+4y+1的值是( )
A.1
B.4
C.7
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B、C分別是線段A1B,B1C,C1A的中點(diǎn),若△ABC的面積是1,那么△A1B1C1的面積 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com