【題目】在數(shù)軸上,數(shù)所對應的點與原點的距離叫做數(shù)的絕對值,記作
提出問題:(1)點所表示的數(shù)如圖所示,則兩點間的距離是 ,兩點間的距離是_____,兩點間的距離是 .
探究結論:(2)在數(shù)軸上,若兩點對應的數(shù)分別是,則____ (用含有的式子表示).
拓展應用:(3)請利用.上述結論,解決下列問題:
①和在數(shù)軸上對應的點之間的距離為
②
③滿足的未知數(shù)的值為
【答案】(1);;(2) (3)① ② ③2或-3
【解析】
(1)直接根據(jù)絕對值的定義求解即可;
(2)根據(jù)絕對值的定義求解即可;
(3)①根據(jù)(2)中的結論求解;
②根據(jù)絕對值的定義去絕對值符號后計算即可;
③x-1表示數(shù)軸上表示x的點與表示1的點之間的距離,x+2表示數(shù)軸上表示x的點與表示-2的點之間的距離,結合數(shù)軸即可求解.
(1)根據(jù)題意可得:
A表示-5,B表示,C表示3,D表示
∴C、D兩點間的距離是 ;
A、B兩點間的距離是 ;
A、D兩點間的距離是.
故答案為:;;.
(2)在數(shù)軸上,若兩點對應的數(shù)分別是,則
故答案為:
(3)①和在數(shù)軸上對應的點之間的距離為
故答案為:
②
③根據(jù)題意得:即為數(shù)軸上表示x的點到1與-2的距離之和為5,而1-(-2)=3,故表示x的點不在1與-2含(1與-2)之間,故x>1或x<-2;
當x>1時,x-1+x+2=5,x=2
當x<-2時,1-x-x-2=5,x=-3
故答案為:2或-3
科目:初中數(shù)學 來源: 題型:
【題目】按要求完成下列各小題.
(1)先化簡,再求值:,其中是最大的負整數(shù),是2的倒數(shù);
(2)已知關于的方程與方程的解相同,求的值;
(3)用一根長為(單位:)的鐵絲,首尾相接圍成一個正方形,要將它按如圖所示的方式向外等距擴,得到新的正方形,求這根鐵絲增加的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖是某同學在沙灘上用石于擺成的小房子.
觀察圖形的變化規(guī)律,寫出第n個小房子用了___________________塊石子.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了“你最喜愛的電視節(jié)目”的問卷調(diào)查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:
(1)本次問卷調(diào)查共調(diào)查了________名觀眾;圖②中最喜愛“新聞節(jié)目”的人數(shù)占調(diào)查總人數(shù)的百分比為________;
(2)補全圖①中的條形統(tǒng)計圖;
(3)現(xiàn)有最喜愛“新聞節(jié)目”(記為),“體育節(jié)目”(記為),“綜藝節(jié)目”(記為),“科普節(jié)目”(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“”和“”兩位觀眾的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,),B(2,0),C點在x軸上運動,過點O作直線AC的垂線,垂足為D.當點C在x軸上運動時,點D也隨之運動.則線段BD長的最大值為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在A處利用測角儀觀測氣球C的仰角為30°,然后他沿正對氣球方向前進了40m到達B處,此時觀測氣球的仰角為45°.如果測角儀高度為1m,那么氣球的高度是多少?(精確到0.1m)(備注:≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠MON內(nèi)的一點,過點P作PA⊥OM于點A,PB⊥ON于點B,且OA=OB.
(1)求證:PA=PB;
(2)如圖②,點C是射線AM上一點,點D是線段OB上一點,且∠CPD+∠MON=180°,若OC=8,OD=5.求線段OA的長.
(3)如圖③,若∠MON=60°,將PB繞點P以每秒2°的速度順時針旋轉,12秒后,PA開始繞點P以每秒10°的速度順時針旋轉,PA旋轉270°后停止,此時PB也隨之停止旋轉.旋轉過程中,PA所在直線與OM所在直線的交點記為G,PB所在直線與ON所在直線的交點記為H.問PB旋轉幾秒時,PG=PH?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,∠BAC=20°,∠ACF=80°.
(1)求∠2的度數(shù);
(2)FC與AD平行嗎?為什么?
(3)根據(jù)以上結論,你能確定∠ADB與∠FCB的大小關系嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com