【題目】如圖,四邊形紙片ABCD中,∠A=70°,∠B=80°,將紙片折疊,使C,D落在AB邊上的C′,D′處,折痕為MN,則∠AMD′+∠BNC′=(
A.50°
B.60°
C.70°
D.80°

【答案】B
【解析】解:四邊形紙片ABCD中,∠A=70°,∠B=80°, ∴∠D+∠C=360°﹣∠A﹣∠B=210°,
∵將紙片折疊,使C,D落在AB邊上的C,D′處,
∴∠MD′B=∠D,∠NC′A=∠C,
∴∠MD′B+∠NC′A=210,
∴∠AD′M+∠BC′N=150°,
∴∠AMD′+∠BNC′=360°﹣∠A﹣∠B﹣∠AD′M﹣∠BC′N=60°,
故選B.
根據(jù)四邊形的內(nèi)角和得到∠D+∠C=360°﹣∠A﹣∠B=210°,由折疊的性質(zhì)得到∠MD′B=∠D,∠NC′A=∠C,得到∠MD′B+∠NC′A=210,根據(jù)平角的定義得到∠AD′M+∠BN′N=150°,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點將線段分成兩條相等的線段,那么叫做線段的二等分點(中點);如果點,將線段分成三條相等的線段,,那么叫做線段的三等分點;…;依此類推,如果點將線段分成條相等的線段,那么叫做線段等分點,如圖①所示.

已知點在直線的同側(cè),請回答下列問題.

(1)在所給邊長為個單位長度的正方形網(wǎng)格中,探究:

①如圖②,若點到直線的距離分別是4個單位長度和2個單位長度,則線段 的中點到直線的距離是 個單位長度;

②如圖③,若點到直線的距離分別是2個單位長度和5個單位長度,則線段 的中點到直線的距離是 個單位長度;

③由①②可以發(fā)現(xiàn)結(jié)論:若點到直線的距離分別是個單位長度和個單位長度,則線段 的中點到直線的距離是 個單位長度.

(2)如圖④,若點到直線的距離分別是,利用(1)中的結(jié)論求線段的三等分點,到直線的距離分別是 .

(3)若點到直線的距離分別是,點為線段等分點,直接寫出第等分點到直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與兩坐標軸的交點分別為A、B、C,且OA=OC=1,則下列關(guān)系中正確的是(
A.a+b=﹣1
B.a﹣b=﹣1
C.b<2a
D.ac<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.

(1)求證:△ADC≌△CEB;

(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,,,點和點點出發(fā),分別在射線和射線上運動,且點運動的速度是點運動的速度的倍,當點運動至__________時,全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)七年級四班的同學(xué)在體檢中測量了自己的身高,并求出了該班同學(xué)的平均身高.

(1)下表給出了該班5名同學(xué)的身高情況(單位:cm),試完成該表,并求出該班同學(xué)的平均身高.

姓名

劉杰

劉濤

李明

張春

劉建

身高

161

   

   

165

155

身高與全班同

學(xué)平均身高差

+3

﹣1

0

   

   

(2)誰最高?誰最矮?

(3)計算這5名同學(xué)的平均身高是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次測繪活動中,某同學(xué)站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠DAB=60°,ABDE,則下列結(jié)論:①ABDE;EFADBC;AFCD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.其中成立的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC于點D,EF垂直平分AC,交AC于點F,交BC于點E,且BDDE,連接AE.

(1)若∠BAE=30°,求∠C的度數(shù);

(2)若△ABC的周長為13cm,AC=6cm,求DC的長.

查看答案和解析>>

同步練習冊答案