【題目】某商場計劃用3 800元購進節(jié)能燈120只,這兩種節(jié)能燈的進價、售價如下表:
進價(元/只) | 售價(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)求甲、乙兩種節(jié)能燈各進多少只?
(2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?
【答案】(1)甲、乙兩種節(jié)能燈分別進80、40只;(2)全部售完120只節(jié)能燈后,該商場獲利潤1000元.
【解析】
(1)設商場購進甲種節(jié)能燈x只,則購進乙種節(jié)能燈y只,根據(jù)兩種節(jié)能燈的總價為3800元建立方程組求出其解即可;
(2)根據(jù)售完這120只燈后,得出利潤即可.
(1)設商場購進甲種節(jié)能燈x只,則購進乙種節(jié)能燈y只,由題意得
,
解得:,
答:甲、乙兩種節(jié)能燈分別進80、40只;
(2)由題意得:80×5+40×15=1000,
答:全部售完120只節(jié)能燈后,該商場獲利潤1000元.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解龍崗區(qū)學生喜歡球類活動的情況,采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)本次共調(diào)查的學生人數(shù)為___,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m=___,n=___;
(3)表示“足球”的扇形的圓心角是___度;
(4)若龍崗區(qū)初中學生共有60000人,則喜歡乒乓球的有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組成員小華對本班上學期期末考試數(shù)學成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計分析,繪制成如下頻數(shù)分布直方圖和頻數(shù)、頻率分布表.請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計 |
頻數(shù) | 2 | 20 | 16 | 4 | 50 | |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | 1 |
(1)頻數(shù)、頻率分布表中 , ;
(2)補全頻數(shù)分布直方圖;
(3)數(shù)學老師準備從不低于90分的學生中選1人介紹學習經(jīng)驗,那么取得了93分的小華被選上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發(fā)價和零售價如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價元千克 | 20 | 40 |
零售價元千克 | 26 | 50 |
他購進的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列解題過程,然后解答后面兩個問題.
解方程:|x+3|=2.
解:當x+3≥0時,原方程可化為x+3=2,解得x=-1;
當x+3<0時,原方程可化為x+3=-2,解得x=-5.
所以原方程的解是x=-1或x=-5.
(1)解方程:|3x-2|-4=0.
(2)已知關于x的方程|x-2|=b+1.
①若方程無解,則b的取值范圍是 .
②若方程只有一個解,則b的值為 .
③若方程有兩個解,則b的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為做好“創(chuàng)文創(chuàng)衛(wèi)”工作,某縣城進行道路改造,由A、B兩個施工隊施工,已知由A施工隊單獨完成所有工程需要20天.若在A、B兩個施工隊共同施工6天后,A施工隊有事撤出工程,剩下的工程由B施工隊單獨施工15天才完成.
(1)求B施工隊單獨完成所有工程需要多少天?
(2)若施工開始后,要求B施工隊施工不能超過18天,要完成該工程,A施工隊至少需要施工多少天才能撤出工程?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為mcm,寬為ncm)的盒子底部(如圖②)盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是( )
A.4m cmB.4n cmC.2(m+n) cmD.4(m-n) cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com