【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h20t5t2

1)小球飛行時(shí)間是多少時(shí),小球最高?最大高度是多少?

2)小球飛行時(shí)間t在什么范圍時(shí),飛行高度不低于15m?

【答案】1)小球飛行時(shí)間是2s時(shí),小球最高為20m(2) 1≤t≤3.

【解析】

1)將函數(shù)解析式配方成頂點(diǎn)式可得最值;

2)畫(huà)圖象可得t的取值.

1)∵h=﹣5t2+20t=﹣5t22+20,

∴當(dāng)t2時(shí),h取得最大值20米;

答:小球飛行時(shí)間是2s時(shí),小球最高為20m;

2)如圖,

由題意得:1520t5t2,

解得:t11t23,

由圖象得:當(dāng)1≤t≤3時(shí),h≥15,

則小球飛行時(shí)間1≤t≤3時(shí),飛行高度不低于15m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有且僅有一組對(duì)角相等的凸四邊形叫做準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.

1)如圖①,上的四個(gè)點(diǎn),,延長(zhǎng),使.求證:四邊形是準(zhǔn)平行四邊形;

2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,,若的半徑為,求的長(zhǎng);

3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請(qǐng)直接寫(xiě)出長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OC是△ABCAB邊的中線,∠ABC36°,點(diǎn)DOC上一點(diǎn),如果ODkOC,過(guò)DDECA交于BA點(diǎn)E,點(diǎn)MDE的中點(diǎn),將△ODE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α度(其中0°<α180°)后,射線OM交直線BC于點(diǎn)N

1)如果△ABC的面積為26,求△ODE的面積(用k的代數(shù)式表示);

2)當(dāng)NB不重合時(shí),請(qǐng)?zhí)骄俊?/span>ONB的度數(shù)y與旋轉(zhuǎn)角α的度數(shù)之間的函數(shù)關(guān)系式;

3)寫(xiě)出當(dāng)△ONB為等腰三角形時(shí),旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用26m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍ABBC兩邊),設(shè)BCx m

1)若矩形花園ABCD的面積為165m2,求 x的值;

2)若在P處有一棵樹(shù),樹(shù)中心P與墻CD,AD的距離分別是13m6m,要將這棵樹(shù)圍在花園內(nèi)(考慮到樹(shù)以后的生長(zhǎng),籬笆圍矩形ABCD時(shí),需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過(guò)點(diǎn)軸,垂足為,直線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),且,.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)直接寫(xiě)出關(guān)于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2bxc(a0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為-13.與y軸負(fù)半軸交于點(diǎn)C,在下面五個(gè)結(jié)論中:①2ab0;②abc0;③c=-3a;④只有當(dāng)a 時(shí),ABD是等腰直角三角形;⑤使ACB為等腰三角形的a值可以有三個(gè).其中正確的結(jié)論是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2 x+ca≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C0,﹣2),已知B點(diǎn)坐標(biāo)為(40).

1)求拋物線的解析式;

2)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),記點(diǎn)M到線段BC的距離為d,當(dāng)d取最大值時(shí),求出此時(shí)M點(diǎn)的坐標(biāo);

3)若點(diǎn)P是拋物線上一點(diǎn),點(diǎn)E是直線y=x上的動(dòng)點(diǎn),是否存在點(diǎn)P、E,使以點(diǎn)A,點(diǎn)B,點(diǎn)P,點(diǎn)E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)軸交于的左側(cè))與軸交于點(diǎn),連接、.

1)如圖1,點(diǎn)是直線上方拋物線上一點(diǎn),當(dāng)面積最大時(shí),點(diǎn)分別為軸上的動(dòng)點(diǎn),連接、,求的周長(zhǎng)最小值;

2)如圖2,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),將拋物線沿射線的方向平移得到新的拋物線,使得軸于點(diǎn)的左側(cè)). 繞點(diǎn)順時(shí)針旋轉(zhuǎn). 拋物線的對(duì)稱軸上有動(dòng)點(diǎn),坐標(biāo)系內(nèi)是否存在一點(diǎn),使得以、、為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,拋物線y=﹣x2+4x+m4m為常數(shù))與y軸的交點(diǎn)為C,M3,0)與N0,﹣2)分別是x軸、y軸上的點(diǎn)

1)當(dāng)m1時(shí),求拋物線頂點(diǎn)坐標(biāo).

2)若3x3+m時(shí),函數(shù)y=﹣x2+4x+m4有最小值﹣7,求m的值.

3)若拋物線與線段MN有公共點(diǎn),直接寫(xiě)出m的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案