【題目】如圖1,某超市從一樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為124,AB的長(zhǎng)度是13米,MN是二樓樓頂,MN∥PQ,CMN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈07,tan42°≈09

【答案】58

【解析】試題分析:延長(zhǎng)CBPQ于點(diǎn)D,根據(jù)坡度的定義即可求得BD的長(zhǎng),然后在直角△CDA中利用三角函數(shù)即可求得CD的長(zhǎng),則BC即可得到.

試題解析:延長(zhǎng)CBPQ于點(diǎn)D

∵M(jìn)N∥PQ,BC⊥MN

∴BC⊥PQ

自動(dòng)扶梯AB的坡度為124

設(shè)BD=5k米,AD=12k米,則AB=13k米.

∵AB=13米,

∴k=1

∴BD=5米,AD=12米.

Rt△CDA中,∠CDA=90゜,∠CAD=42°

∴CD=ADtan∠CAD≈12×090≈108米,

∴BC≈58米.

答:二樓的層高BC約為58米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀下面材料:

點(diǎn)A,B在數(shù)軸上分別表示實(shí)數(shù)a,b,A,B兩點(diǎn)之間的距離表示為|AB|.

當(dāng)A,B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖(1),|AB|=|OB|=|b|=|a﹣b|;當(dāng)A,B兩點(diǎn)都不在原點(diǎn)時(shí),

①如圖(2),點(diǎn)A,B都在原點(diǎn)的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如圖(3),點(diǎn)A,B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

③如圖(4),點(diǎn)A,B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

綜上,數(shù)軸上A,B兩點(diǎn)之間的距離|AB|=|a﹣b|.

(2)回答下列問(wèn)題:

①數(shù)軸上表示2和5的兩點(diǎn)之間的距離是  ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是  ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是  

②數(shù)軸上表示x和﹣1的兩點(diǎn)A和B之間的距離是  ,如果|AB|=2,那么x為  ;

③當(dāng)代數(shù)式|x+1|+|x﹣2|取最小值時(shí),相應(yīng)的x的取值范圍是  

④解方程|x+1|+|x﹣2|=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)a,b在數(shù)軸上對(duì)應(yīng)的AB兩點(diǎn)之間距離

探究運(yùn)用

數(shù)軸上表示13兩點(diǎn)之間的距離是_____;數(shù)軸上表示x2兩點(diǎn)之間的距離是_____

②根據(jù)圖像比較大小 ______填“<”、“=”、).

拓展延伸

③若點(diǎn)ABC在數(shù)軸上分別表示數(shù)-1、4c,且點(diǎn)C到點(diǎn)AB的距離之和是7c=_____

④關(guān)于x的方程mn,k0),借助數(shù)軸探究方程的解的情況,直接寫出結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)務(wù)院辦公廳2015年3月16日發(fā)布了《中國(guó)足球改革的總體方案》,這是中國(guó)足球歷史上的重大改革.為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

獲獎(jiǎng)等次

頻數(shù)

頻率

一等獎(jiǎng)

10

0.05

二等獎(jiǎng)

20

0.10

三等獎(jiǎng)

30

b

優(yōu)勝獎(jiǎng)

a

0.30

鼓勵(lì)獎(jiǎng)

80

0.40

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

(1)a= ,b= ,且補(bǔ)全頻數(shù)分布直方圖;

(2)若用扇形統(tǒng)計(jì)圖來(lái)描述獲獎(jiǎng)分布情況,問(wèn)獲得優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)是多少?

(3)在這次競(jìng)賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級(jí)競(jìng)賽,請(qǐng)用樹狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列式子:131×2+35313×2+17,545×2+414.請(qǐng)你想一想:(ab)(a+b)_____(用含ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.

1)如圖②,當(dāng)α=135°時(shí),求AE′,BF′的長(zhǎng);

2)如圖③,當(dāng)0°﹤α﹤180°時(shí), AE′BF′有什么位置關(guān)系;

3)若直線AE′與直線BF′相交于點(diǎn)P,求點(diǎn)P的縱坐標(biāo)的最大值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為(  )

A.
B.8
C.
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程2x+1=﹣3的解是關(guān)于x的方程72(xa)3的解,則a的值為( )

A. 2B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案