精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,FC=2,則AB的長為( 。

A.
B.8
C.
D.6

【答案】D
【解析】解:如圖,連接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∴∠FCA=30°,
∴∠FBC=30°,
∵FC=2,
∴BC= ,
∴AC=2BC=4
∴AB= ,
故選D

【考點精析】認真審題,首先需要了解矩形的性質(矩形的四個角都是直角,矩形的對角線相等).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一組數據4、44、5、56、7的眾數和中位數分別是(

A.44B.45C.75D.76

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:2x3÷x=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側面示意圖.已知自動扶梯AB的坡度為124AB的長度是13米,MN是二樓樓頂,MN∥PQCMN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈07,tan42°≈09

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,直線l3l1、l2相交,形成∠1、∠2、…、∠8,請你填上認為適合已知的一個條件:__________,使得l1l2。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了實現街巷硬化工程高質量“全覆蓋”,我省今年1﹣4月公路建設累計投資92.7億元,該數據用科學記數法可表示為(
A.0.927×1010
B.92.7×1010
C.9.27×1011
D.9.27×109

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2018年某市的生產總值約為2041億元,將2041億元用科學記數法表示為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖1,拋物線y=x2x+3x軸交于AB兩點(點A在點B的左側),與y軸相交于點C,點D的坐標是(0,1),連接BC、AC

1)求出直線AD的解析式;

2)如圖2,若在直線AC上方的拋物線上有一點F,當ADF的面積最大時,有一線段MN=(點M在點N的左側)在直線BD上移動,首尾順次連接點A、M、NF構成四邊形AMNF,請求出四邊形AMNF的周長最小時點N的橫坐標;

3)如圖3,將DBC繞點D逆時針旋轉α°0α°180°),記旋轉中的DBCDB′C′,若直線B′C′與直線AC交于點P,直線B′C′與直線DC交于點Q,當CPQ是等腰三角形時,求CP的值.

查看答案和解析>>

同步練習冊答案