【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是多少?
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
【答案】
(1)解:∵商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同,
∴他去買一瓶飲料,則他買到奶汁的概率是:
(2)解:畫樹狀圖得:
∵共有12種等可能的結(jié)果,他恰好買到雪碧和奶汁的有2種情況,
∴他恰好買到雪碧和奶汁的概率為: =
【解析】(1)由商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與他恰好買到雪碧和奶汁的情況,再利用概率公式即可求得答案.
【考點精析】本題主要考查了列表法與樹狀圖法的相關(guān)知識點,需要掌握當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2= 的圖象交與A(1,M),B(n,﹣1)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D,連接AO,BO.得出以下結(jié)論:
①點A和點B關(guān)于直線y=﹣x對稱;
②當(dāng)x<1時,y2>y1;
③S△AOC=S△BOD;
④當(dāng)x>0時,y1 , y2都隨x的增大而增大.
其中正確的是( )
A.①②③
B.②③
C.①③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B,C重合),CN⊥DM,CN與AB交于點N,連接OM,ON,MN.下列五個結(jié)論:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,則S△OMN的最小值是 ,其中正確結(jié)論的個數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線y=﹣ +bx+c與x軸相交于點A,B,與y軸相交于點C,直線y=x+4經(jīng)過A,C兩點,
(1)求拋物線的表達(dá)式;
(2)如果點P,Q在拋物線上(P點在對稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標(biāo);
(3)動點M在直線y=x+4上,且△ABC與△COM相似,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,點E、D分別是AC,BC邊的中點,點P為AB邊上的一個動點,連接PE,PD,PC,DE.設(shè)AP=x,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的( )
A.線段DE
B.線段PD
C.線段PC
D.線段PE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A1、A2、A3、…、An在x軸上,且OA1=A1A2=A2A3═An﹣1An=1,分別過點A1、A2、A3、…、An作x軸的垂線,交反比例函數(shù)y= (x>0)的圖象于點B1、B2、B3、…、Bn , 過點B2作B2P1⊥A1B1于點P1 , 過點B3作B3P2⊥A2B2于點P2 , …,若記△B1P1B2的面積為S1 , △B2P2B3的面積為S2 , …,△BnPnBn+1的面積為Sn , 則S1+S2+…+S2017= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(A點在B點左側(cè)),直線l與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.
(1)求A、B兩點的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標(biāo);
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運(yùn)動到點E,再沿線段ED以每秒 個單位的速度運(yùn)動到點D后停止,問當(dāng)點E的坐標(biāo)是多少時,點Q在整個運(yùn)動過程中所用時間最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com