【題目】如圖,由6個小正方形組成的網(wǎng)格中,陰影部分是涂黑2個小正方形所形成的圖案.
(1)如果將一粒米隨機地拋在這個網(wǎng)格上,那么米粒落在陰影部分的概率是______.
(2)現(xiàn)將網(wǎng)格內(nèi)空白的小正方形()中任取2個涂黑,得到新圖案.請用列表或畫樹狀圖的方法求新圖案是軸對稱圖形的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為的拋物線與軸交于、兩點,與軸交于點,其中點坐標為設(shè)拋物線的頂點為.
求拋物線的解析式及頂點坐標;
為軸上的一點,當的周長最小時,求點的坐標及的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點為C(0,),與x軸交于A、B兩點,且A(﹣1,0).
(1)求拋物線的解析式;
(2)點P從點B出發(fā),以每秒1個單位的速度向點A運動,同時點Q從點C出發(fā),以每秒v個單位的速度向y軸負方向勻速運動,運動時間為t秒,連接PQ交射線BC于點D,當點P到達點A時,點Q停止運動,以點P為圓心,PB為半徑的圓與射線BC交于點E.
①求BE的長;當t=1時,求DE的長;
②若在點P,Q運動的過程中,線段DE的長始終是一個定值,求v的值及DE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=x2+bx+c經(jīng)過點A(3,0),點B(﹣1,0),與y軸負半軸交于點C,連接BC、AC.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使得以A、B、C、P為頂點的四邊形的面積等于△ABC的面積的倍?若存在,求出點P的坐標;若不存在,請說明理由.
(3)如圖2,直線BC與拋物線的對稱軸交于點K,將直線AC繞點C按順時針方向旋轉(zhuǎn)α°,直線AC在旋轉(zhuǎn)過程中的對應(yīng)直線A′C與拋物線的另一個交點為M.求在旋轉(zhuǎn)過程中△MCK為等腰三角形時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,C是⊙O上的一點(不與點A,B重合),過點C作AB的垂線交⊙O于點D,垂足為E點.
(1)如圖1,當AE=4,BE=2時,求CD的長度;
(2)如圖2,連接AC,BD,點M為BD的中點.求證:ME⊥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸正半軸于點,直線經(jīng)過拋物線的頂點.已知該拋物線的對稱軸為直線,交軸于點.
(1)求的值.
(2)是第一象限內(nèi)拋物線上的一點,且在對稱軸的右側(cè),連接.設(shè)點的橫坐標為;
①的面積為,用含的式子表示;
②記.求關(guān)于的函數(shù)表達式及的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標系中,如果點到直線的距離與它到軸、軸的距離都相等,那么稱點為直線的“穩(wěn)定點”.
(1)到軸、軸的距離相等的點一定在直線__________________上;
(2)在下圖中作出直線,并求出該直線所有“穩(wěn)定點”的坐標;
(備用圖)
(3)當時,直線的“穩(wěn)定點”的坐標為__________________;
(4)當時,直線的所有“穩(wěn)定點”的橫坐標之間存在何種數(shù)量關(guān)系,請畫圖直接說明,無需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,“春節(jié)期間”,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為x(千克),在甲園所需總費用為y甲(元),在乙園所需總費用為y乙(元),y甲、y乙與x之間的函數(shù)關(guān)系如圖所示,折線OAB表示y乙與x之間的函數(shù)關(guān)系.
(1)甲采摘園的門票是 元,乙采摘園優(yōu)惠前的草莓單價是每千克 元;
(2)當x>10時,求y乙與x的函數(shù)表達式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂部A點測得建筑物CD的頂部C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°,求建筑物CD的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com