(2012•唐山二模)某政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元.銷售過程中發(fā)現(xiàn),月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=-10x+n.
(1)當(dāng)銷售單價(jià)x定為25元時(shí),李明每月獲得利潤(rùn)為w為1250元,則n=
500
500
;
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?并求最大利潤(rùn)為多少元.
分析:(1)根據(jù)已知得出w=(x-20)•y進(jìn)而代入x=25,W=1250進(jìn)而求出n的值即可;
(2)利用w=(x-20)•y得出W與x之間的函數(shù)關(guān)系式,令:函數(shù)關(guān)系式的關(guān)系式-10x2+700x-10000=2000,進(jìn)而求出即可;
(3)利用公式法求出x=35時(shí)二次函數(shù)取到最值,再利用這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元得出答案即可.
解答:解:(1)∵y=-10x+n,當(dāng)銷售單價(jià)x定為25元時(shí),李明每月獲得利潤(rùn)為w為1250元,
∴則W=(25-20)×(-10×25+n)=1250,
解得:n=500;
故答案為:500.

(2)由題意,得:w=(x-20)•y,
=(x-20)•(-10x+500)=-10x2+700x-10000,
令:-10x2+700x-10000=2000,
解這個(gè)方程得:x1=30,x2=40(舍).
答:李明想要每月獲得2000元的利潤(rùn),銷售單價(jià)應(yīng)定為30元.

(3)由(2)知:w=-10x2+700x-10000,∴x=-
b
2a
=35

∵-10<0,∴拋物線開口向下.
∵x≤32∴w隨x的增大而增大.
∴當(dāng)x=32時(shí),w最大=2160.
答:銷售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)為2160元.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)的最值求法,根據(jù)已知得出W與x的函數(shù)關(guān)系式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•唐山二模)計(jì)算:(
3
-
2
)(
3
+
2
)=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•唐山二模)如圖,已知⊙O是正方形ABCD的外接圓,點(diǎn)E是AD上任意一點(diǎn),則∠BEC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•唐山二模)如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為
16
16
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•唐山二模)小明的講義夾里放了大小相同的試卷共10頁,其中語文2頁、數(shù)學(xué)3頁、英語5頁,他隨機(jī)地從講義夾中抽出1頁,抽出的試卷恰好是數(shù)學(xué)試卷的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•唐山二模)分式方程
1
x-2
+
4
2-x
=1
的解是
x=-1
x=-1

查看答案和解析>>

同步練習(xí)冊(cè)答案