【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)C'處,連接C'D交AB于點(diǎn)E,連接BC',當(dāng)△BC'D是直角三角形時,DE的長為_________.
【答案】或
【解析】試題分析:如圖1所示;點(diǎn)E與點(diǎn)C′重合時.在Rt△ABC中,BC==4.由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.設(shè)DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=1.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點(diǎn)D在CB上運(yùn)動,∠DBC′<90°,故∠DBC′不可能為直角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象交軸、軸分別于兩點(diǎn),交直線于。
(1)求點(diǎn)的坐標(biāo);
(2)若,求的值;
(3)在(2)的條件下,是線段上一點(diǎn),軸于,交于,若,求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校團(tuán)委為積極參與“陶行知杯.全國書法大賽”現(xiàn)場決賽,向?qū)W校學(xué)生征集書畫作品,今年3月份舉行了“書畫比賽”初賽,初賽成績評定為A,B,C,D,E五個等級.該校七年級書法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題.
(1)該校七年級書法班共有 名學(xué)生;扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于 度,并補(bǔ)全條形統(tǒng)計圖;
(2)A等級的4名學(xué)生中有2名男生,2名女生,現(xiàn)從中任意選取2名學(xué)生參加“陶行知杯.全國書法大賽”現(xiàn)場決賽,請你用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形中,,點(diǎn)從開始沿邊向點(diǎn)以的速度移動,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動. 分別從同時出發(fā),當(dāng)一個動點(diǎn)到達(dá)終點(diǎn)則另一動點(diǎn)也隨之停止運(yùn)動,
(1)求為何值時,為等腰三角形?
(2)是否存在某一時刻,使點(diǎn)在線段的垂直平分線上?
(3)點(diǎn)在運(yùn)動的過程中,是否存在某時刻, 直線把的周長分為兩部分?若存在,求出,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC延長線于M,連接CD,下列四個結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB-BC=2MC,其中正確的有( )個.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,
(1)求∠APO+∠DCO的度數(shù);
(2)求證:AC=AO+AP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解甲、乙兩家快遞公司比較合適,甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi),乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)當(dāng)x>1時,請分別直接寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(每個學(xué)生必選且只能選一門課程)班主任想要了解全班同學(xué)對哪門課程感興趣,就在全班進(jìn)行調(diào)查,將獲得的數(shù)據(jù)整理繪制成如圖下所示兩幅不完整的統(tǒng)計圖.
學(xué)習(xí)感興趣的課程情況條形統(tǒng)計圖:
學(xué)習(xí)感興趣的課程情況扇形統(tǒng)計圖:
根據(jù)統(tǒng)計圖信息,解答下列問題.
(1)全班共有________名學(xué)生,的值是________
(2)據(jù)以上信息,補(bǔ)全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中,“數(shù)學(xué)”所在扇形的圓心角是________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com