【題目】如圖,在直角三角形中,,點(diǎn)從開始沿邊向點(diǎn)以的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng). 分別從同時(shí)出發(fā),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)則另一動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),
(1)求為何值時(shí),為等腰三角形?
(2)是否存在某一時(shí)刻,使點(diǎn)在線段的垂直平分線上?
(3)點(diǎn)在運(yùn)動(dòng)的過程中,是否存在某時(shí)刻, 直線把的周長分為兩部分?若存在,求出,若不存在,請(qǐng)說明理由.
【答案】(1)2;(2)存在,;(3)存在,或
【解析】
(1)根據(jù)題意用t表示出BP、BQ,根據(jù)等腰三角形的概念列方程,解方程得到答案;
(2)根據(jù)線段垂直平分線的性質(zhì)得到QA=QC,列方程,解方程即可;
(3)分AC+AP+CQ=2(BP+BQ)、2(AC+AP+CQ)=BP+BQ兩種情況計(jì)算,得到答案.
由題意得,
則
當(dāng)為等腰三角形時(shí),
只有
解得,
當(dāng)點(diǎn)在線段的垂直平分線上時(shí),連接QA,
設(shè)
則
解得,即
(秒)
在中,
當(dāng)直線把的周長分為兩部分時(shí),
①當(dāng)時(shí),
解得,
②當(dāng)時(shí),
解得,
當(dāng)或時(shí),直線把的周長分為兩部分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.
(1)求點(diǎn)B的坐標(biāo).
(2)在點(diǎn)P運(yùn)動(dòng)過程中,∠ABQ的大小是否發(fā)生改變?若不改變,求出其大;若改變,請(qǐng)說明理由.
(3)連接OQ,當(dāng)OQ∥AB時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花圃用花盆培育某種花苗,經(jīng)過實(shí)驗(yàn)發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時(shí),平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達(dá)到10元,每盆應(yīng)該植多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC中,D為邊AC上一點(diǎn).
(1)以BD為邊作等邊△BDE,連接CE,求證:AD=CE;
(2)如果以BD為斜邊作Rt△BDE,且∠BDE=30°,連接CE并延長,與AB的延長線交于F點(diǎn),求證:AD=BF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的同學(xué),某班準(zhǔn)備購買甲、乙、丙三種不同的筆記本作為獎(jiǎng)品,其單價(jià)分別為2元、3元、4元,購買這些筆記本需要花60元;經(jīng)過協(xié)商,每種筆記本單價(jià)下降0.5元,只花了49元,那么以下哪個(gè)結(jié)論是正確的( )
A. 乙種筆記本比甲種筆記本少4本
B. 甲種筆記本比丙種筆記本多6本
C. 乙種筆記本比丙種筆記本多8本
D. 甲種筆記本與乙種筆記本共12本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般的,數(shù)a的絕對(duì)值|a|表示數(shù)a對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離.同理,絕對(duì)值|a﹣b|表示數(shù)軸上數(shù)a對(duì)應(yīng)的點(diǎn)與數(shù)b對(duì)應(yīng)的點(diǎn)的距離.例如:|3﹣0|指在數(shù)軸上表示數(shù)3的點(diǎn)與原點(diǎn)的距離,所以3的絕對(duì)值是3,即|3﹣0|=|3|=3.|6﹣2|指數(shù)軸上表示6的點(diǎn)和表示2的點(diǎn)的距離,所以數(shù)軸上表示6的點(diǎn)和表示2的點(diǎn)的距離是4,即|6﹣2|=4.
結(jié)合數(shù)軸與絕對(duì)值的知識(shí)解答下列問題:
(1)解含絕對(duì)值的方程|x+2|=1得x的解為 ;
(2)解含絕對(duì)值的不等式|x+5|<3得x的取值范圍是 ;
(3)求含絕對(duì)值的方程的整數(shù)解;
(4)解含絕對(duì)值的不等式|x﹣1|+|x﹣2|>4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)C'處,連接C'D交AB于點(diǎn)E,連接BC',當(dāng)△BC'D是直角三角形時(shí),DE的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形的邊長為是邊上一動(dòng)點(diǎn),連接交于點(diǎn),點(diǎn)是線段的垂直平分線與的交點(diǎn),連接,并延長交邊于點(diǎn).
(1)如圖1,若求的度數(shù)(用含的式子表示);
(2)如圖2,連接當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),探究的周長是否為定值?若是,求其值;若不是,說明理由;
(3)若點(diǎn)為的中點(diǎn),則的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校為了迎接體育中考,了解學(xué)生的體育成績(jī),從全校1000名九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行體育測(cè)試,其中“跳繩”成績(jī)制作圖如下:
根據(jù)圖表解決下列問題:
(1)本次共抽取了 名學(xué)生進(jìn)行體育測(cè)試,表(1)中,a= ,b= c= ;
(2)補(bǔ)全圖2.
(3)“跳繩”數(shù)在180(包括180)以上,則此項(xiàng)成績(jī)可得滿分.那么,你估計(jì)全校九年級(jí)有多少學(xué)生在此項(xiàng)成績(jī)中獲滿分?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com