如圖,矩形OABC在平面直角坐標(biāo)系中,A(0,3),C(4,0),點P為直線AB上一動點,將直線OP繞點P逆時針方向旋轉(zhuǎn)90°交直線BC于點Q,當(dāng)△POQ為等腰三角形時,點P坐標(biāo)為________.

P1(1,3),P2(7,3)
分析:設(shè)點P的橫坐標(biāo)為m,因為△POQ是等腰三角形所以PO=PQ,根據(jù)等式PA2+AO2=PB2+BQ2可求得m的值,從而就可確定點P的坐標(biāo).
解答:∵△POQ是等腰三角形,
①若P在線段AB上,∠OPQ=90°
∴PO=PQ,
又∵△OAP∽△PBQ,
∴△OAP≌△PBQ
∴PB=AO,即3=4-m,
∴m=1,即P點坐標(biāo)(1,3);
②若P在線段AB的延長線上,PQ交CB的延長線于Q,PO=PQ,
又∵△AOP∽△BPQ,
∴△AOP≌△BPQ,
∴AO=PB,即3=m-4,即P點的坐標(biāo)(7,3);
③當(dāng)P在線段BA的延長線上時,顯然不成立;
故點P坐標(biāo)為P1(1,3),P2(7,3).
故答案為:P1(1,3),P2(7,3).
點評:此題考查學(xué)生對等腰三角形的性質(zhì),相似三角形的判定,勾股定理及一次函數(shù)等知識點的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC在平面直角坐標(biāo)系中,若OA、OC的長滿足|OA-2|+(OC-2
3
)2=0

(1)求B、C兩點的坐標(biāo);
(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BB′的解析式;
(3)在直線BB′上是否存在點P,使△ADP為直角三角形?若存在,請直接寫出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,OA=3,AB=2.拋物線y=ax2+bx+c(a≠0)經(jīng)過點A和點B,與x軸分別交于點D、E(點D在點E左側(cè)),且OE=1,則下列結(jié)論:
①a>0;②c>3;③2a-b=0;④4a-2b+c=3;⑤連接AE、BD,則S梯形ABDE=9.
其中正確結(jié)論的個數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昆明)如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.
(1)求拋物線的解析式;
(2)求點D的坐標(biāo);
(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浙江二模)如圖,矩形OABC在平面直角坐標(biāo)系中,A(0,3),C(4,0),點P為直線AB上一動點,將直線OP繞點P逆時針方向旋轉(zhuǎn)90°交直線BC于點Q,當(dāng)△POQ為等腰三角形時,點P坐標(biāo)為
P1(1,3),P2(7,3)
P1(1,3),P2(7,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•淮安)如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉(zhuǎn)135°,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM=
45
45
°,OM=
2
2
2
2
;
(2)將矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當(dāng)0<t≤4
2
-2時,S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案