作業(yè)寶如圖中點P的坐標(biāo)可能是


  1. A.
    (-5,3)
  2. B.
    (4,3)
  3. C.
    (5,-3)
  4. D.
    (-5,-3)
D
分析:根據(jù)點P在第三象限解答.
解答:(-5,3)、(4,3)、(5,-3)、(-5,-3)中只有(-5,-3)在第三象限,
所以,點P的坐標(biāo)可能是(-5,-3).
故選D.
點評:本題考查了各象限內(nèi)點的坐標(biāo)的符號特征,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O(shè)為原點建立平面直角坐標(biāo)系,點D為線段BC的中點,動點P從點A出發(fā),以每秒4個單位的速度,沿折線AOCD向終點C運動,運動時間是t秒.
(1)D點的坐標(biāo)為
 
;
(2)當(dāng)t為何值時,△APD是直角三角形;
(3)如果另有一動點Q,從C點出發(fā),沿折線CBA向終點A以每秒5個單位的速度與P點同時運動,當(dāng)一點到達(dá)終點時,兩點均停止運動,問:P、C、Q、A四點圍成的四邊形的面積能否為28?如果可能,求出對應(yīng)的t;如果不可能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,
①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,
①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求精英家教網(wǎng)出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC中,∠A=∠B=30°,AB=2
3
,把△ABC放在平面直角坐標(biāo)系中,使AB的中點位于坐標(biāo)原點O(如圖),△ABC可以繞點O作任意角度的旋轉(zhuǎn).
(1)當(dāng)點B在第一象限,縱坐標(biāo)是
6
2
時,求點B的橫坐標(biāo);
(2)如果拋物線y=ax2+bx+c(a≠0)的對稱軸經(jīng)過點C,請你探究:
①當(dāng)a=
5
4
,b=-
1
2
,c=-
3
5
5
時,A,B兩點是否都在這條拋物線上?并說明理由;
②設(shè)b=-2am,是否存在這樣的m的值,使A,B兩點不可能同時在這條拋物線上?若存在,直精英家教網(wǎng)接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市二模)如圖,已知正方形OABC的兩個頂點坐標(biāo)分別是A(2,0),B(2,2).拋物線y=
1
2
x2-mx+
1
2
m2(m≠0)的對稱軸交x軸于點P,交反比例函數(shù)y=
k
x
(k>0)圖象于點Q,連接OQ.
(1)求拋物線的頂點坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)m=
1
2
k=2時,求證:△OPQ為等腰直角三角形;
(3)設(shè)反比例函數(shù)y=
k
x
(k>0)圖象交正方形OABC的邊BC、BA于M、N兩點,連接AQ、BQ,有S△ABQ=4S△APQ
①當(dāng)M為BC邊的中點時,拋物線能經(jīng)過點B嗎?為什么?
②連接OM、ON、MN,試分析△OMN有可能為等邊三角形嗎?若可能,試求m+2k的值;若不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案