【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關系,并證明你的結論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結論是否成立?若不成立,請直接寫出正確結論.
【答案】(1)見解析;(2)見解析
【解析】 試題分析:(1)通過三角形全等的判定ASA證明△FAB≌△DAC,然后根據(jù)全等三角形的性質可證得結論;
(2)根據(jù)題意,分為:點D在AB的延長線上;點D在AB的反向延長線上,兩種情況進行討論即可.
試題解析:(1)如圖1,
∵BE⊥CD即∠BEC=90°,∠BAC=90°,
∴∠F+∠FBA=90°,∠F+∠FCE=90°.
∴∠FBA=∠FCE.
∵∠FAB=180°-∠DAC=90°,
∴∠FAB=∠DAC.
在△FAB和△DAC中,
AB=AC
∴△FAB≌△DAC(ASA).
∴FA=DA.
∴AB=AD+BD=FA+BD.
(2)(1)中的結論不成立.
點D在AB的延長線上時,AB=AF-BD;點D在AB的反向延長線上時,AB=BD-AF.
理由如下:
①當點D在AB的延長線上時,如圖2.
同理可得:FA=DA.
則AB=AD-BD=AF-BD.
②點D在AB的反向延長線上時,如圖3.
同理可得:FA=DA.
則AB=BD-AD=BD-AF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為10,B是數(shù)軸上位于點A左側一點,且AB=30,動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為秒.
(1)數(shù)軸上點B表示的數(shù)是________,點P表示的數(shù)是________(用含的代數(shù)式表示);
(2)若M為線段AP的中點,N為線段BP的中點,在點P運動的過程中,線段MN的長度會發(fā)生變化嗎?如果不變,請求出這個長度;如果會變化,請用含的代數(shù)式表示這個長度;
(3)動點Q從點B處出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時與點Q相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)兩點,與y軸交于點C.
(1)設AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點D為直線BC下方拋物線上一動點,當△BCD的面積最大時,求點D的坐標;
(3)是否存在整數(shù)a,b使得1<x1<2和1<x2<2同時成立,請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段 AB a .延長線段 BA 到點 C,使 AC=2AB,延長線段 AB 到點 E,使 BE= BC.
(1)用刻度尺按要求補全圖形;
(2)圖中有幾條線段?求出所有線段的長度和(用含 a 的代數(shù)式表示);
(3)點 D 是 CE 的中點,若 AD=0.5cm,求 a 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC≌△ADE,BC的延長線交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點,求 的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點O作EF∥BC分別交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個斜邊長相等的直角三角形紙片如圖①放置,其中∠ACB=∠CED=90°.∠A=45°,∠D=30°.
(1)∠CBA= ;
(2)把△DCE繞點C順時針旋轉15°得到△D1CE1,如圖②,連接D1B,則∠E1D1B= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com