如圖的平面直角坐標系中,拋物線交x軸于A、B兩點(點B在點A的右側(cè)),交y軸于點C,以OC、OB為兩邊作矩形OBDC,CD交拋物線于G.
(1)求OC和OB的長;
(2)拋物線的對稱軸l在邊OB(不包括O、B兩點)上作平行移動,交x軸于點E,交CD于點F,交BC于點M,交拋物線于點P.設OE=m,PM=h,求h與m的函數(shù)關(guān)系式,并求出PM的最大值;
(3)連接PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△BEM相似?若存在,直接求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

【答案】分析:(1)根據(jù)拋物線的解析式,易求得B、C的坐標,即可得到OB、OC的長;
(2)若OE=m,即P、M的橫坐標為m,可根據(jù)B、C的坐標,用待定系數(shù)法求出直線BC的解析式,進而根據(jù)拋物線和直線BC的解析式表示出P、M的縱坐標,即可得到PM的長,即h的表達式,由此可求出h、m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)及自變量的取值范圍即可求出PM的最大值;
(3)由于∠PFC和∠BEM都是直角,對應相等,若所求的兩個三角形相似,存在兩種情況:
①△PFC∽△BEM,②△CFP∽△BEM;
可分別用m表示出BE、EM、CF、PF的長,根據(jù)上述兩類相似三角形所得的不同比例線段即可求出m的值.
解答:解:(1)對于,
當x=0時,y=4;
當y=0時,,
解得x1=-1,x2=3;(2分)
∴點B的坐標為(3,0),點C的坐標為(0,4);
∴OC=4,OB=3;(3分)

(2)∵拋物線的對稱軸l⊥x軸,在邊PE∥l,
∴PE⊥x軸;
∵OE=m,
∴點P的橫坐標為m;
∵點P在拋物線上,
∴點P的縱坐標為
∴PE=;(4分)
在Rt△BOC中,tan∠OBC=;
在Rt△BME中,
ME=BEtan∠OBC=(OB-OE)•tan∠OBC=(3-m)=4-m;(5分)
∴PM=PE-ME=-4+m=
∴h與m的函數(shù)關(guān)系式為h=(0<m<3)(6分)
又h=,
∵-<0,
∴當m=時,h有最大值為3,
∴PM的最大值為3;(8分)

(3)①當m=時,△PFC∽△BEM,此時△PCM為直角三角形(∠PCM為直角);(10分)
②當m=1時,△CFP∽△BEM,此時△PCM為等腰三角形(PC=CM).(12分)
點評:此題考查了二次函數(shù)與坐標軸交點坐標的求法、二次函數(shù)的應用以及相似三角形的判定和性質(zhì);要注意的是當相似三角形的對應邊和對應角不明確時,要分類討論,以免漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某校九年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高
209
m,與籃圈中心的水平距離7m.當球出手后水平距離為4m時到達最大高度4m,設籃球運行的軌跡為拋物線,籃圈距地面3m.
(l)建立如圖的平面直角坐標系,求出此軌跡所在拋物線的解析式.
(2)問此球能否準確投中?
(3)此時,若對方隊員乙在甲前面2m 處跳起蓋帽攔截,已知乙的最大摸高為3.lm,那么他能否攔截成功?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,矩形ABCD被對角線AC分為兩個直角三角形,AB=3,BC=6.現(xiàn)將Rt△ADC繞點C順時針旋轉(zhuǎn)90°,點A旋轉(zhuǎn)后的位置為點E,點D旋轉(zhuǎn)后的位置為點F.以C為原點,以BC所在直線為x軸,以過點C垂直于BC的直線為y軸,建立如圖②的平面直角坐標系.

(1)求直線AE的解析式;
(2)將Rt△EFC沿x軸的負半軸平行移動,如圖③.設OC=x(0<x≤9),Rt△EFC與Rt△ABO的重疊部分面積為s;求當x=1與x=8時,s的值;
(3)在(2)的條件下s是否存在最大值?若存在,求出這個最大值及此時x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將邊長為4的正方形在如圖的平面直角坐標系中.點P是OA上的一個動點,且從點O向點A運動.連接CP交對角線OB于點D,連接AD.
(1)求證:△OCD≌△OAD;
(2)若△OCD的面積是四邊形OABC面積的
16
,求P點的坐標;
(3)若點P從點O運動到點A后,再繼續(xù)從點A運動到點B,在整個運動過程中,當△OCD恰為等腰三角形時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在如圖的平面直角坐標系中,依次描出下列各點:
(0,2),(5,6),(3,2),(5,3),(5,1),(3,2),(4,0),(0,2).
再用線段順次連接各點,得到一個圖形象
一條魚
一條魚

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)△ABC在如圖的平面直角坐標系中,將其平移得到△A'B'C',若B的對應點B′的坐標為(1,1);
(1)在圖中畫出△A′B′C′;
(2)此次平移可以看作將△ABC向
 
平移
 
個單位長度,再向
 
平移
 
個單位長度,得△A′B′C′;
(3)直接寫出△A′B′C′的面積為
 

查看答案和解析>>

同步練習冊答案