【題目】已知正方形ABCD,對角線AC、BD交于點O,線段OE⊥OF,且與邊AD、AB交于點E、F.
(1)求證:OE=OF;
(2)連接EF,交AC于點H,若HF:AF=:2,求OH:EF;
(3)若E、F分別在DA、AB延長線上,OE與AB交于點M,若△MOF∽△EAF,AF=1,求正方形ABCD的邊長.
【答案】(1)見解析;(2)=;(3)正方形的邊長為2﹣
【解析】
(1)證明△EOA≌△FOB(ASA)即可解決問題;
(2)證明△OEH∽△FAH,推出=,可得==,由EF=OE,可得==,由此即可解決問題;
(3)首先證明OA=OB=BF,設OA=OB=BF=x,則AB=x,根據AF=1,構建方程即可解決問題.
(1)證明:如圖1中,
∵四邊形ABCD是正方形,
∴OA=OB,AC⊥BD,∠EAO=∠OBF=45°,
∵OE⊥OF,
∴∠EFO=∠AOB=90°,
∴∠AOE=∠BOF,
∴△EOA≌△FOB(ASA),
∴OE=OF.
(2)解:如圖1中,∵OE=OF,∠EOF=90°,
∴∠OEF=∠OFE=45°,
∵∠CAB=45°,
∴∠OEH=∠FAH,
∵∠EHO=∠AHF,
∴△OEH∽△FAH,
∴FF0C,
∵EF=OE,
∴,
∴=;
(3)解:如圖2中,
∵△MOF∽△EAF,
∴∠OFM=∠EAF,
由(1)可知△AOE≌△BOF,
∴OE=OF,
∵∠EOF=90°,
∴∠EFO=45°,
∴∠BFO=∠BFE=22.5°,
∵∠ABO=∠BFO+∠BOF=45°,
∴∠BOF=∠BOF=22.5°,
∴OB=BF,
∵OA=OB,
∴OA=OB=BF,設OA=OB=BF=x,則AB=x,
∵AF=AB+BF=x+x=1,
∴x=﹣1,
∴AB=AF﹣BF=1﹣(﹣1)=2﹣,
∴正方形的邊長為2﹣.
科目:初中數學 來源: 題型:
【題目】在甲乙兩個不透明的口袋中,分別有大小、材質完全相同的小球,其中甲口袋中的小球上分別標有數字1,2,3,4,乙口袋中的小球上分別標有數字2,3,4,先從甲袋中任意摸出一個小球,記下數字為m,再從乙袋中摸出一個小球,記下數字為n.
(1)請用列表或畫樹狀圖的方法表示出所有(m,n)可能的結果;
(2)若m,n都是方程x2﹣5x+6=0的解時,則小明獲勝;若m,n都不是方程x2﹣5x+6=0的解時,則小利獲勝,問他們兩人誰獲勝的概率大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,若△ABC的面積為S△ABC=36cm2,則梯形EDBC的面積SEDBC為( 。
A.9B.18C.27D.30
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,點B′在線段AB上,AC,A′B′交于點O,則∠COA′的度數是( )
A.50°B.60°
C.45°D.80°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣4)(0≤x≤4)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2,交x軸于A2;將C2繞A2旋轉180°得到C3,交x軸于A3;…如此變換進行下去,若點P(17,m)在這種連續(xù)變換的圖象上,則m的值為( )
A.2B.﹣2C.﹣3D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的各邊,在邊BC的同側分別作三個正方形ABDI,BCFE,ACHG.
(1)求證:△BDE≌△BAC;
(2)求證:四邊形ADEG是平行四邊形.
(3)直接回答下面兩個問題,不必證明:
①當△ABC滿足條件_____________________時,四邊形ADEG是矩形.
②當△ABC滿足條件_____________________時,四邊形ADEG是正方形?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com