【題目】數(shù)軸上A、B、C三點(diǎn)對應(yīng)的數(shù)分別是a、b、c,若ab<0,c為最大的負(fù)整數(shù),c>a且|b|>|a|.
(1)請?jiān)跀?shù)軸上標(biāo)出A,B,C三點(diǎn)的大致位置;
(2)化簡|a﹣b|+|b﹣a+c|﹣|b﹣c|.
【答案】(1)答案見解析;(2) .
【解析】試題分析:(1)由c為最大的負(fù)整數(shù),確定出c=﹣1,再由c>a,確定出a<﹣1,再根據(jù)ab<0且|b|>|a|知b>0,且b到原點(diǎn)的距離大于a到原點(diǎn)的距離,從而確定出在數(shù)軸上的大概位置;
(2)分b﹣a≥1、 b﹣a<1分別進(jìn)行討論即可得.
試題解析:(1)∵c為最大的負(fù)整數(shù),
∴c=﹣1,
∵c>a,
∴a<﹣1,
由ab<0且|b|>|a|知b>0,且b到原點(diǎn)的距離大于a到原點(diǎn)的距離,
如圖所示:
(2)當(dāng)b﹣a≥1時(shí),原式=b﹣a+b﹣a+c﹣(b﹣c)=b﹣a+b﹣a+c﹣b+c=b﹣2a+2c;
當(dāng)b﹣a<1時(shí),原式=b﹣a﹣(b﹣a+c)﹣(b﹣c)=b﹣a﹣b+a﹣c﹣b+c=﹣b.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)二次函數(shù)y=3(x﹣1)2+2圖象的結(jié)論,不正確的是( 。
A.圖象是拋物線,且開口向上
B.圖象的對稱軸為直線 x=1
C.圖象的最低點(diǎn)坐標(biāo)為(1,2)
D.圖象與x軸有兩個(gè)交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于線段AB的長為半徑畫孤,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD,若△ADC的周長為10,AB=7,則△ABC的周長為( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過建設(shè)者三年多艱苦努力地施工,貫通我市A、B兩地又一條高速公路全線通車。已知原來A地到B地普通公路長150km,高速公路路程縮短了30km,如果一輛小車從A地到B地走高速公路的平均速度可以提高到原來的1.5倍,需要的時(shí)間可以比原來少用1小時(shí)10分鐘。求小車走普通公路的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點(diǎn),OC=OA,若E是CD上任意一點(diǎn),連接BE交AC于點(diǎn)F,連接DF.
(1)證明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四邊形ABCD的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠ADC的平分線交直線BC于點(diǎn)E、交AB的延長線于點(diǎn)F,連接AC.
(1)如圖1,若∠ADC=90°,G是EF的中點(diǎn),連接AG、CG.
①求證:BE=BF;
②請判斷△AGC的形狀,并說明理由.
(2)如圖2,若∠ADC=60°,將線段FB繞點(diǎn)F順時(shí)針旋轉(zhuǎn)60°至FG,連接AG、CG,判斷△AGC的形狀.(直接寫出結(jié)論不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB,分別以A、B為圓心,大于線段AB長為半徑畫弧,兩弧相交于點(diǎn)C、Q,連接CQ與AB相交于點(diǎn)D,連接AC,BC,求∠ADC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com