【題目】如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為( )
A.30,2
B.60,2
C.60,
D.60,
【答案】C
【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AC=BC×cot∠A=2× =2 ,AB=2BC=4,
∵△EDC是△ABC旋轉而成,
∴BC=CD=BD= AB=2,
∵∠B=60°,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∴∠DCF=30°,∠DFC=90°,即DE⊥AC,
∴DE∥BC,
∵BD= AB=2,
∴DF是△ABC的中位線,
∴DF= BC= ×2=1,CF= AC= ×2 = ,
∴S陰影= DF×CF= × = .
故選C.
【考點精析】認真審題,首先需要了解含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半),還要掌握旋轉的性質(①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件: , 使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的頂點分別為A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y軸上有一點P(0,2).作點P關于點A的對稱點P1 , 作P1關于點B的對稱點P2 , 作點P2關于點C的對稱點P3 , 作P3關于點D的對稱點P4 , 作點P4關于點A的對稱點P5 , 作P5關于點B的對稱點P6┅,按如此操作下去,則點P2011的坐標為( )
A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABO中,已知點 、B(﹣1,﹣1)、O(0,0),正比例函數(shù)y=﹣x圖象是直線l,直線AC∥x軸交直線l與點C.
(1)C點的坐標為;
(2)以點O為旋轉中心,將△ABO順時針旋轉角α(90°≤α<180°),使得點B落在直線l上的對應點為B′,點A的對應點為A′,得到△A′OB′. ①∠α=;②畫出△A′OB′.
(3)寫出所有滿足△DOC∽△AOB的點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.
(1)本次抽測的男生有人,抽測成績的眾數(shù)是;
(2)請你將圖2的統(tǒng)計圖補充完整;
(3)若規(guī)定引體向上5次以上(含5次)為體能達標,則該校350名九年級男生中估計有多少人體能達標?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2)
(1)寫出點A、B的坐標:
A( , )、B( , )
(2)判斷△ABC的形狀 .計算△ABC的面積是 .
(3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,A′B′C′的三個頂點坐標分別是A′( , ),B′( , ),C′( , )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為確保信息安全,在傳輸時往往需加密,發(fā)送方發(fā)出一組密碼a,b,c時,則接收方對應收到的密碼為A,B,C.雙方約定:A=2a﹣b,B=2b,C=b+c,例如發(fā)出1,2,3,則收到0,4,5.
(1)當發(fā)送方發(fā)出一組密碼為2,3,5時,則接收方收到的密碼是多少?
(2)當接收方收到一組密碼2,8,11時,則發(fā)送方發(fā)出的密碼是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列四個結論中,正確的是( )
A.方程x+ =﹣2有兩個不相等的實數(shù)根
B.方程x+ =1有兩個不相等的實數(shù)根
C.方程x+ =2有兩個不相等的實數(shù)根
D.方程x+ =a(其中a為常數(shù),且|a|>2)有兩個不相等的實數(shù)根
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com