【題目】1)問題發(fā)現(xiàn)

如圖1,在RtABCRtCDE中,∠ACB=∠DCE90°,∠CAB=∠CDE45°,點D時線段AB上一動點,連接BE

填空:①的值為   ; ②∠DBE的度數(shù)為   

2)類比探究

如圖2,在RtABCRtCDE中,∠ACB=∠DCE90°,∠CAB=∠CDE60°,點D是線段AB上一動點,連接BE.請判斷的值及∠DBE的度數(shù),并說明理由;

3)拓展延伸

如圖3,在(2)的條件下,將點D改為直線AB上一動點,其余條件不變,取線段DE的中點M,連接BM、CM,若AC2,則當(dāng)CBM是直角三角形時,線段BE的長是多少?請直接寫出答案.

【答案】1)①1; 90°;(2,∠DBE90°,理由見解析;(3BE的長為3+3

【解析】

1)由直角三角形的性質(zhì)可得∠ABC45°,可得∠DBE90°,通過證明ACD∽△BCE,可得的值;

2)通過證明ACD∽△BCE,可得的值,∠CBE=∠CAD60°,即可求∠DBE的度數(shù);

3)分點D在線段AB上和BA延長線上兩種情況討論,由直角三角形的性質(zhì)可證CMBM,即可求DE2,由相似三角形的性質(zhì)可得∠ABE90°BEAD,由勾股定理可求BE的長.

解:(1)∵∠ACB90°,∠CAB45°

∴∠ABC=∠CAB45°,

ACBC,∠DBE=∠ABC+CBE90°,

∵∠ACB=∠DCE90°,

∴∠ACD=∠BCE,且∠CAB=∠CDE45°

∴△ACD∽△BCE,

,

故答案為:190°;

2,∠DBE90°;

理由:∵∠ACB=∠DCE90°,∠CAB=∠CDE60°,

∴∠ACD=∠BCE,∠CED=∠ABC30°,

tanABCtan30°,

∵∠ACB=∠DCE90°,∠CAB=∠CDE60°,

RtACBRtDCE

,

,且∠ACD=∠BCE,

∴△ACD∽△BCE,

,∠CBE=∠CAD60°,

∴∠DBE=∠ABC+CBE90°

3)若點D在線段AB上,如圖,

由(2)知:,∠ABE90°,

BEAD,

AC2,∠ACB90°,∠CAB90°,

AB4,BC2,

∵∠ECD=∠ABE90°,且點MDE中點,

CMBMDE

CBM是直角三角形,

CM2+BM2BC2=(22,

BMCM,

DE2,

DB2+BE2DE2

∴(4AD2+AD224,

AD+1,

BEAD3+;

若點D在線段BA延長線上,如圖,

同理可得:DE2BEAD,

BD2+BE2DE2

∴(4+AD2+AD224,

AD1,

BEAD3

綜上所述:BE的長為3+3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面內(nèi)的兩條直線l1、l2,A、B在直線l2上,過點A、B兩點分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長度可記作TAB,CDTABl2,特別地,線段AC在直線l2上的正投影就是線段A1C,請依據(jù)上述定義解決如下問題.

1)如圖1,在銳角ABC中,AB=5,TAC,AB=3,則TBC,AB=

2)如圖2,在Rt△ABC中,∠ACB=90°,TACAB=4,TBCAB=9,求△ABC的面積;

3)如圖3,在鈍角△ABC中,∠A=60°,點DAB邊上,∠ACD=90°,TAD,AC=2,TBC,AB=6,求TBCCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.如圖,若點D與圓心O不重合,∠BAC25°,則∠DCA的度數(shù)(  )

A.35°B.40°C.45°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,弦BE的垂直平分線交⊙O于點C,CDABDAD1,BE6,則BD的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛轎車在經(jīng)過某路口的感應(yīng)線BC處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應(yīng)線之間距離BC6.2m,在感應(yīng)線B、C兩處測得電子警察A的仰角分別為∠ABD45°,∠ACD28°.求電子警察安裝在懸臂燈桿上的高度AD的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin28°0.47,cos28°0.88,tan28°0.53

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個同學(xué)做了一個數(shù)字游戲:拿出三張正面寫有數(shù)字,2,3且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機(jī)抽取一張,將所得數(shù)字作為的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機(jī)抽取一張,將所得數(shù)字作為的值,兩次結(jié)果記為.

(1)請你幫他們用畫樹狀圖或列表的方法表示所有可能出現(xiàn)的結(jié)果;

(2)若將記錄結(jié)果看成平面直角坐標(biāo)系中的一點,求是第一象限內(nèi)的點的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是中華人民共和國國旗中的重要元素五角星,其中A、B、C、D、E是正五邊形的五個頂點,則∠AFE的度數(shù)是_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20179月,我國中小學(xué)生迎來了新版教育部統(tǒng)編義務(wù)教育語文教科書,本次統(tǒng)編本教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

(1)本次一共調(diào)查了   名學(xué)生;

(2)請將條形統(tǒng)計圖補(bǔ)充完整;

(3)某班語文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)綠水青山就是金山銀山的號召,建設(shè)生態(tài)文明,某工廠自20191月開始限產(chǎn)并進(jìn)行治污改造,其月利潤(萬元)與月份之間的變化如圖所示,治污完成前是反比例函數(shù)圖象的一部分,治污完成后是一次函數(shù)圖象的部分,下列選項錯誤的是(

A.4月份的利潤為萬元

B.污改造完成后每月利潤比前一個月增加萬元

C.治污改造完成前后共有個月的利潤低于萬元

D.9月份該廠利潤達(dá)到萬元

查看答案和解析>>

同步練習(xí)冊答案