【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=kx+b經(jīng)過(guò)點(diǎn)A(2,0),B(0,1),動(dòng)點(diǎn)P是x軸正半軸上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸,交直線(xiàn)AB于點(diǎn)C,以O(shè)A,AC為邊構(gòu)造OACD,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求直線(xiàn)AB的函數(shù)表達(dá)式;
(2)若四邊形OACD恰是菱形,請(qǐng)求出m的值;
(3)在(2)的條件下,y軸的正半軸上是否存在點(diǎn)Q,連結(jié)CQ,使得∠OQC+∠ODC=180°.若存在,直接寫(xiě)出所有符合條件的點(diǎn)Q的坐標(biāo),若不存在,則說(shuō)明理由.
【答案】
(1)
解:把A(2,0),B(O,1)代入y=kx+b,
可得 ,解得 ,
∴直線(xiàn)AB的函數(shù)表達(dá)式為y=﹣ x+1
(2)
解:∵OACD是菱形,
∴AC=OA=2,
∵PC⊥x軸,交直線(xiàn)AB于點(diǎn)C,
∴C(m,﹣ m+1),
∴(2﹣m)2+(﹣ m+1)2=22,
解得m1= ,m2=
(3)
解:由(2)求得m1= ,m2= ,且C點(diǎn)在直線(xiàn)AB上,
∴C點(diǎn)坐標(biāo)為( ,﹣ )或( , ),
∵OACD是菱形,
∴∠D=∠OAC,
要使∠OQC+∠ODC=180°,即;∠OQC+∠OAC=180°,
∴四邊形QOAC的對(duì)角互補(bǔ),
∴∠QOA+∠QCA=180°,
∵∠QOA=90°,
∴∠QCA=90°,
∴QC⊥AB,
設(shè)Q(0,n),
∴直線(xiàn)QC的解析式為y=2x+n,
把C點(diǎn)坐標(biāo)分別代入y=2x+n,可得﹣ =2× +n或 =2× +n,
解得n=﹣4+2 或n=﹣4﹣2 (舍去),
∴點(diǎn)Q的坐標(biāo)為(0,﹣4+2 ),
綜上可知存在滿(mǎn)足條件的點(diǎn)Q,其坐標(biāo)為(0,﹣4+2 )
【解析】(1)把點(diǎn)A(2,0),B(0,1)代入直線(xiàn)y=kx+b解方程可得;(2)根據(jù)菱形的性質(zhì)得到AC=2,由點(diǎn)C(m,﹣ m+1)得到AP=|2﹣m|,CP=﹣
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為12的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交BC于點(diǎn)G.則BG的長(zhǎng)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的為8,B是數(shù)軸上一點(diǎn),且AB=14,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);
(2)動(dòng)點(diǎn)H從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、H同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)H?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=4,BC=2.若把它放在平面直角坐標(biāo)系中,使AB在x軸上,點(diǎn)C在y軸上,如果點(diǎn)A的坐標(biāo)為(-3,0),求點(diǎn)B,C,D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.
(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了倡導(dǎo)“節(jié)約用水從我做起”,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計(jì)圖
【1】求這10個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
【2】根據(jù)樣本數(shù)據(jù),估計(jì)小剛所在班50名同學(xué)家庭中月均用水量不超過(guò)7 t的約有多少戶(hù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,P為射線(xiàn)AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,連接EA,EC.
(Ⅰ)如圖1,若點(diǎn)P在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,求證:EA=EC;
(Ⅱ)如圖2,若點(diǎn)P在線(xiàn)段AB的中點(diǎn),連接AC,判斷△ACE的形狀,并說(shuō)明理由;
(Ⅲ)如圖3,若點(diǎn)P在線(xiàn)段AB上,連接AC,當(dāng)EP平分∠AEC時(shí),設(shè)AB=a,BP=b,求a:b及∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,點(diǎn)A、O、B依次在直線(xiàn)MN上,現(xiàn)將射線(xiàn)OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),同時(shí)射線(xiàn)OB繞點(diǎn)O沿逆時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線(xiàn)OB是由射線(xiàn)OM、射線(xiàn)OA、射線(xiàn)ON中的其中兩條組成的角(指大于0°而不超過(guò)180°的角)的平分線(xiàn)?如果存在,請(qǐng)直接寫(xiě)出t的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com