【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了倡導(dǎo)“節(jié)約用水從我做起”,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計(jì)圖
【1】求這10個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
【2】根據(jù)樣本數(shù)據(jù),估計(jì)小剛所在班50名同學(xué)家庭中月均用水量不超過(guò)7 t的約有多少戶.
【答案】
【1】平均數(shù):6.8眾數(shù):6.5中位數(shù):6.5
【2】35人
【解析】
解:(1)觀察條形圖,可知這組樣本數(shù)據(jù)的平均數(shù)是:
∴這組樣本數(shù)據(jù)的平均數(shù)為6.8(t)
∵在這組樣本數(shù)據(jù)中,6.5出現(xiàn)了4次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是6.5(t)
∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是6.5,
有,
∴這組數(shù)據(jù)的中位數(shù)是6.5(t);
(2)∵10戶中月均用水量不超過(guò)7t的有7戶,
有50×=35,
∴根據(jù)樣本數(shù)據(jù),可以估計(jì)出小剛所在班50名同學(xué)家庭中月均用水量不超過(guò)7t的約有35戶。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將二次函數(shù)y=x2﹣m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1 , 另有一次函數(shù)y=x+b的圖象記為y2 , 則以下說(shuō)法: ①當(dāng)m=1,且y1與y2恰好有三個(gè)交點(diǎn)時(shí)b有唯一值為1;
②當(dāng)b=2,且y1與y2恰有兩個(gè)交點(diǎn)時(shí),m>4或0<m< ;
③當(dāng)m=﹣b時(shí),y1與y2一定有交點(diǎn);
④當(dāng)m=b時(shí),y1與y2至少有2個(gè)交點(diǎn),且其中一個(gè)為(0,m).
其中正確說(shuō)法的序號(hào)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).觀察圖象可知:當(dāng)x=﹣3或1時(shí),y1=y2 .
(1)通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集 .
(2)參考觀察函數(shù)的圖象方法,解決問(wèn)題:關(guān)于x的不等式x2+a﹣ <0(a>0)只有一個(gè)整數(shù)解,則a的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b經(jīng)過(guò)點(diǎn)A(2,0),B(0,1),動(dòng)點(diǎn)P是x軸正半軸上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸,交直線AB于點(diǎn)C,以O(shè)A,AC為邊構(gòu)造OACD,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求直線AB的函數(shù)表達(dá)式;
(2)若四邊形OACD恰是菱形,請(qǐng)求出m的值;
(3)在(2)的條件下,y軸的正半軸上是否存在點(diǎn)Q,連結(jié)CQ,使得∠OQC+∠ODC=180°.若存在,直接寫出所有符合條件的點(diǎn)Q的坐標(biāo),若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在求值問(wèn)題中,我們經(jīng)常遇到利用整體思想來(lái)解決問(wèn)題.
例如1:已知:x+2y﹣3z=2,2x+y+6z=1,求:x+y+z的值
解:令x+2y﹣3z=2﹣﹣﹣﹣﹣①2x+y+6z=1﹣﹣﹣﹣﹣﹣②
①+②得3x+3y+3z=3所以x+y+z=1
已知求x+2y的值
解:①×2得:2x+2y=﹣10③
②﹣③得:x+2y=11
利用材料中提供的方法,解決下列問(wèn)題
(1)已知:關(guān)于x,y的二元一次方程組 的解滿足x﹣y=6,求m的值
(2)某步行街?jǐn)[放有若干盆甲、乙、丙三種造型的盆景.甲種盆景由15朵紅花、24朵黃花和25朵紫花搭配而成,乙種盆景由10朵紅花和12朵黃花搭配而成,丙咱盆景由10朵紅花、18朵黃花和25朵紫花搭配而成.這些盆景一共用了2900朵紅花,3750朵紫花,求黃花一共用了多少朵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開(kāi)設(shè)四門選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共有人,在扇形統(tǒng)計(jì)圖中,m的值是;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書(shū)法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書(shū)法活動(dòng),請(qǐng)寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,M、N兩動(dòng)點(diǎn)分別從A.C兩點(diǎn)同時(shí)出發(fā)沿正方形的邊開(kāi)始移動(dòng),點(diǎn)M按逆時(shí)針?lè)较蛞苿?dòng),點(diǎn)N按順時(shí)針?lè)较蛞苿?dòng),若點(diǎn)M的速度是點(diǎn)N的4倍,則它們第2018次相遇在邊_____上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項(xiàng),得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè).
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是某市部分簡(jiǎn)圖,為了確定各建筑物的位置:
(1)請(qǐng)你以火車站為原點(diǎn)建立平面直角坐標(biāo)系.
(2)寫出市場(chǎng)的坐標(biāo)為 ;超市的坐標(biāo)為 .
(3)請(qǐng)將體育場(chǎng)為A、賓館為C和火車站為B看作三點(diǎn)用線段連起來(lái),得△ABC,然后將此三角形向下平移4個(gè)單位長(zhǎng)度,畫(huà)出平移后的△A1B1C1,并求出其面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com