【題目】觀察、猜想、探究:
在△ABC中,.
(1)如圖①,當(dāng),AD為∠BAC的角平分線時(shí),求證:;
(2)如圖②,當(dāng),AD為∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的
數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并對(duì)你的猜想給予證明;
(3)如圖③,當(dāng)AD為△ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請(qǐng)直接寫出你的猜想.
【答案】(1)見解析;(2 ) ,理由見解析;(3)
【解析】試題分析:(1)過D作DE⊥AB,交AB于點(diǎn)E,理由角平分線性質(zhì)得到DE=DC,利用HL得到Rt△ACD≌Rt△AED,由全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,得到AC=AE,∠ACB=∠AED,由∠ACB=2∠B,利用等量代換及外角性質(zhì)得到一對(duì)角相等,利用等角對(duì)等邊得到BE=DE=DC,由AB=BE+AE,等量代換即可得證;
(2)AB=CD+AC,理由為:在AB上截取AG=AC,如圖2所示,由角平分線定義得到一對(duì)角相等,再由,利用SAS得到△ADG≌△ADC,接下來同(1)即可得證;
(3)AB=CDAC,理由為:在AF上截取AG=AC,如圖3所示,同(2)即可得證.
試題解析:(1)過D作DE⊥AB,交AB于點(diǎn)E,如圖1所示,
∵AD為∠BAC的平分線,DC⊥AC,DE⊥AB,
∴DE=DC,
在Rt△ACD和Rt△AED中,
AD=AD,DE=DC,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,∠ACB=∠AED,
∵∠ACB=2∠B,
∴∠AED=2∠B,
又∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴BE=DE=DC,
則AB=BE+AE=CD+AC;
(2)AB=CD+AC,理由為:
在AB上截取AG=AC,如圖2所示,
∵AD為∠BAC的平分線,
∴∠GAD=∠CAD,
∵在△ADG和△ADC中,
∴△ADG≌△ADC(SAS),
∴CD=DG,∠AGD=∠ACB,
∵∠ACB=2∠B,
∴∠AGD=2∠B,
又∵∠AGD=∠B+∠GDB,
∴∠B=∠GDB,
∴BE=DG=DC,
則AB=BG+AG=CD+AC;
(3)AB=CDAC,理由為:
在AF上截取AG=AC,如圖3所示,
∵AD為∠FAC的平分線,
∴∠GAD=∠CAD,
∵在△ADG和△ACD中,
∴△ADG≌△ACD(SAS),
∴CD=GD,∠AGD=∠ACD,即∠ACB=∠FGD,
∵∠ACB=2∠B,
∴∠FGD=2∠B,
又∵∠FGD=∠B+∠GDB,
∴∠B=∠GDB,
∴BG=DG=DC,
則AB=BGAG=CDAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)品牌店對(duì)第一季度A,B兩款運(yùn)動(dòng)鞋的銷售情況進(jìn)行統(tǒng)計(jì),兩款運(yùn)動(dòng)鞋的銷售量及總銷售額如圖所示:
A,B兩款運(yùn)動(dòng)鞋銷售量統(tǒng)計(jì)圖 A,B兩款運(yùn)動(dòng)鞋總銷售額統(tǒng)計(jì)圖
(1)一月份B款運(yùn)動(dòng)鞋的銷售量是A款的,則一月份B款運(yùn)動(dòng)鞋銷售了多少雙?
(2)已知B款運(yùn)動(dòng)鞋500元/雙,第一季度這兩款運(yùn)動(dòng)鞋的銷售單價(jià)保持不變,求二、三月份的總銷售額(銷售額=銷售單價(jià)×銷售量);
(3)結(jié)合第一季度的銷售情況,請(qǐng)你對(duì)這兩款運(yùn)動(dòng)鞋的進(jìn)貨、銷售等方面提出一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】政府計(jì)劃投資14萬億元實(shí)施東進(jìn)戰(zhàn)略.為了解民對(duì)東進(jìn)戰(zhàn)略的關(guān)注情況,佳佳隨機(jī)采訪部分民,并對(duì)采訪情況制作了統(tǒng)計(jì)圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | m | 0.1 |
B.一般關(guān)注 | 200 | 0.5 |
C.不關(guān)注 | 60 | n |
D.不知道 | 100 | 0.25 |
(1)采訪總?cè)藬?shù)為__ __人,m=__ __,n=__ __;
(2)補(bǔ)全統(tǒng)計(jì)圖;
(3)估計(jì)在30 000名民中高度關(guān)注東進(jìn)戰(zhàn)略的人數(shù)約為 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1 .
(2)畫出△ABC繞原點(diǎn)O旋轉(zhuǎn)180°后的△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用棋子擺成的“上”字.
(1)依照此規(guī)律,第4個(gè)圖形需要黑子、白子各多少枚?
(2)按照這樣的規(guī)律擺下去,擺成第n個(gè)“上”字需要黑子、白子各多少枚?
(3)請(qǐng)?zhí)骄康趲讉(gè)“上”字圖形白子總數(shù)比黑子總數(shù)多15枚.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng),當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,E是BC的中點(diǎn),過點(diǎn)E作EF⊥AE,交CD于點(diǎn)F,連接AF并延長,交BC的延長線于點(diǎn)G.則CG的長為( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是Δ的一個(gè)外角,我們?nèi)菀鬃C明=,即三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
嘗試探究:
()如圖2,與分別為的兩個(gè)外角,則 (橫線上填 >、< 或=)
初步應(yīng)用:
()如圖3,在紙片中剪去,得到四邊形,,則 .
()解決問題:如圖4,在中,、分別平分外角、,與有何數(shù)量關(guān)系?請(qǐng)利用上面的結(jié)論直接寫出答案 .
()如圖5,在四邊形中,、分別平分外角、,請(qǐng)利用上面的結(jié)論探究與、的數(shù)量關(guān)系.
圖1 圖2 圖3
圖4 圖5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com