14.解方程2(x-1)2=8,則方程的解是x1=3,x2=-1.

分析 先把方程變形為(x-1)2=4,然后利用直接開平方法解方程.

解答 解:(x-1)2=4,
x-1=±2,
所以x1=3,x2=-1.
故答案為x1=3,x2=-1.

點(diǎn)評(píng) 本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.已知a2+2a=1,則代數(shù)式-1-2a2-4a的值為(  )
A.-3B.-1C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.解方程組$\left\{\begin{array}{l}{3x+2y=17}\\{2x+3y=13}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,B,C兩點(diǎn)把線段AD分成2:4:8三部分,點(diǎn)E是AD的中點(diǎn),CD=16,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.思考:已知直線l1,l2,l3相互平行,怎樣在三條直線上各取一點(diǎn)作出一個(gè)等邊三角形?仔細(xì)閱讀小明的作圖方法并證明他的方法是正確的.作法:如圖,先作等邊三角形ADE,使A、E在l1上,D在l3上,DE與l2交于B點(diǎn),連接AB;再在l3上取一點(diǎn)C,使DC=EB,連接AC、BC.則△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算:
(1)$\root{3}{-27}-\sqrt{0}-\sqrt{\frac{1}{16}}$
(2)$-{1^{2015}}-(1-0.5)÷(-\frac{3}{4})×[{4-{{(-4)}^2}}]$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:(π-3.14)0-$\sqrt{27}$+(-1)2016+4×cos30°-|-6|+${({-\frac{1}{2}})^{-3}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,二次函數(shù)y=$\frac{1}{2}$x2+bx-$\frac{3}{2}$的圖象與x軸交于點(diǎn)A(-3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.
(1)b=1;點(diǎn)D的坐標(biāo):(-3,4);
(2)線段AO上是否存在點(diǎn)P(點(diǎn)P不與A、O重合),使得OE的長(zhǎng)為1;
(3)在x軸負(fù)半軸上是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.不等式組$\left\{\begin{array}{l}x>m\\ x>6\end{array}\right.$的解集是x>6,則m取值范圍是m≤6.

查看答案和解析>>

同步練習(xí)冊(cè)答案