【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.
【答案】(1)AF=BE,AF⊥BE(2)結(jié)論成立(3)結(jié)論都能成立
【解析】試題分析:(1)根據(jù)正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進而通過直角可證得BE⊥AF;
(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結(jié)論還成立;
(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結(jié)論.
試題解析:解:(1)AF=BE,AF⊥BE.
(2)結(jié)論成立.
證明:∵四邊形ABCD是正方形,
∴BA="AD" =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,
即∠BAE=∠ADF.
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.
(3)結(jié)論都能成立.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,稱滿足此條件的三角形為黃金等腰三角形.請完成以下操作:(畫圖不要求使用圓規(guī),以下問題所指的等腰三角形個數(shù)均不包括△ABC)
(1)在圖1中畫1條線段,使圖中有2個等腰三角形,并直接寫出這2個等腰三角形的頂角度數(shù)分別是 度和 度;
(2)在圖2中畫2條線段,使圖中有4個等腰三角形;
(3)繼續(xù)按以上操作發(fā)現(xiàn):在△ABC中畫n條線段,則圖中有 個等腰三角形,其中有 個黃金等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】﹣23表示的意義是( 。.
A. (﹣2)×(﹣2)×(﹣2) B. (﹣2)+(﹣2)+(﹣2)
C. (﹣2)×3 D. ﹣2×2×2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個10×10網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.
(1)畫出△ABC關(guān)于直線l的對稱的△A1B1C1.
(2)畫出△ABC關(guān)于點P的中心對稱圖形△A2B2C2.
(3)△A1B1C1與△A2B2C2組成的圖形_______________(是或否)軸對稱圖形,如果是軸對稱圖形,請畫出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①,圖②,圖③都是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要求畫圖:
(1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形;
(2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;
(3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com