如圖,DE過點A,并且DE∥BC,∠B=40°,∠C=60°.

求:∠BAC的度數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.設(shè)點D運動的時間為t秒.
(1)如圖1,過點D作DH⊥AB于H,當t為何值時,△ADH≌△ABC,并求出此時DE的長度;
(2)如圖2,過點B作射線BP∥AC,過點E作EF⊥AC交射線BP于F,G是EF中點,連接DG.當△DEG與△ACB相似時,求t的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,CD∥AB,CB⊥AB,BC=6cm,DC=6cm,AD=10cm
(1)求AB的長.
(2)操作:如圖2,過點D作DE⊥AB于E.將直角梯形ABCD沿DE剪開,得到四邊形DEBC和△ADE.四邊形DEBC不動,將△ADE沿射線AD的方向,以每秒1cm的速度平移,當點A平移到點D時,停止平移.
探究:設(shè)在平移過程中,△ADE與四邊形DEBC重疊部分的面積為ycm2,平移時間為x秒,求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠BAC=90°,AB=80,BC=100.線段BC所在的直線以每秒2個單位的速度沿BA方向運動,并始終保持與原位置平行,交AB于點D,交AC于點E.解答下列問題:
(1)求AC的長.
(2)記x秒時,該直線在△ABC內(nèi)的部分DE的長度為y,試求出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)如圖2,過點D作DG⊥BC于點G,過點E作EF⊥BC于點F,當x為何值時,矩形DEFG的面積最大,最大值是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了測量一池塘的兩端A,B之間的距離,同學(xué)們想出了如下的兩種方案:

①如圖1,先在平地上取一個可直接到達A,B的點C,再連接AC,BC,并分別延長AC至點D,BC至點E,使DC=AC,EC=BC,最后量出DE的距離就是AB的長;
②如圖2,過點B作AB的垂線BF,在BF上取C,D兩點,使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即是AB的距離.
問:
(1)方案①是否可行?
可行
可行
,理由是
SAS可證明△ACB≌△DCE,再根據(jù)全等三角形的性質(zhì)可得AB=ED
SAS可證明△ACB≌△DCE,再根據(jù)全等三角形的性質(zhì)可得AB=ED
;
(2)方案②是否可行?
可行
可行
,理由是
ASA可證明△ACB≌△DCE,再根據(jù)全等三角形的性質(zhì)可得AB=ED
ASA可證明△ACB≌△DCE,再根據(jù)全等三角形的性質(zhì)可得AB=ED
;
(3)小明說在方案②中,并不一定需要BF⊥AB,DE⊥BF,只需要
AB∥DE
AB∥DE
就可以了,請把小明所說的條件補上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校七年級學(xué)生到野外活動,為測量一池塘兩端A,B的距離,甲、乙、丙三位同學(xué)分別設(shè)計出如下幾種方案:

甲:如圖①,先在平地取一個可直接到達A,B的點C,再連接AC,BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的長即為A,B的距離.
乙:如圖②,先過點B作AB的垂線BF,再在BF上取C,D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于點E,則測出DE的長即為A,B的距離.
丙:如圖③,過點B作BD⊥AB,再由點D觀測,在AB的延長線上取一點C,使∠BDC=∠BDA,這時只要測出BC的長即為A,B的距離.
(1)以上三位同學(xué)所設(shè)計的方案,可行的有
甲、乙、丙
甲、乙、丙
;
(2)請你選擇一可行的方案,說說它可行的理由.

查看答案和解析>>

同步練習冊答案