如圖,PA是⊙O的切線,A為切點,PBC是過點O的割線.若PA=8cm,PB=4cm,則⊙O的直徑為( )

A.6cm
B.8cm
C.12cm
D.16cm
【答案】分析:根據(jù)切割線定理得PA2=PB•PC從而可求得PC的長,也就不難求得AB的長.
解答:解:∵PA2=PB•PC,PA=8cm,PB=4cm,
∴PC=16cm,
∴BC=12cm.
故選C.
點評:此題主要是運用了切線長定理,注意最后要求的是圓的直徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省臨沂市莒南縣九年級上學期期中考試數(shù)學試卷(帶解析) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省臨沂市莒南縣九年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結BC.求證:AB=2BC

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.
(1)求證:PC是⊙O的切線;    
(2)若AC=PD,連結BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年4月中考數(shù)學模擬試卷(58)(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結BC.求證:AB=2BC.

查看答案和解析>>

同步練習冊答案