【題目】如圖,方格紙中每個小正方形的邊長均為1,四邊形ABCD的四個頂點都在小正方形的頂點(小正方形的頂點叫格點)上,連接BD.

(1)利用格點在圖中畫出ABDAD邊上的高,垂足為H.

(2)①畫出將ABD先向右平移2格,再向上平移2格得到的A1B1D1;

②平移后,求線段AB掃過的部分所組成的封閉圖形的面積.

【答案】(1)畫圖見解析;(2)畫圖見解析;(3)9

【解析】分析:(1)根據(jù)三角形高線的定義進行作圖;
(2)①根據(jù)平移的方向和距離作出平移后的三角形;②線段AB掃過的部分所組成的封閉圖形可以看成由一個平行四邊形和一個直角三角形組成,計算出它們的面積并相加即可.

詳解:

(1)如圖:

線段DH即為所求.
(2)①如圖:

A1B1D1即為所求.
②如圖,線段AB掃過的部分所組成的封閉圖形(陰影部分)的面積=2×4+×1×2=8+1=9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲取利潤500元;制成酸奶銷售,每噸可獲取利潤1200元;制成奶片銷售,每噸可獲取利潤 2000元。

該加工廠的生產能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時進行。受氣溫條件限制,這批牛奶必須在4天內全部銷售或加工完畢。為此,該廠設計了兩種可行方案:

方案一:盡可能多地制成奶片,其余直接銷售鮮奶;

方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。

你認為哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋擲一個質地均勻且六個面上依次刻有1﹣6的點數(shù)的正方體型骰子,如圖.觀察向上的一面的點數(shù),下列情況屬必然事件的是(
A.出現(xiàn)的點數(shù)是7
B.出現(xiàn)的點數(shù)不會是0
C.出現(xiàn)的點數(shù)是2
D.出現(xiàn)的點數(shù)為奇數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可。蝗绻恳婚g客房住9人,那么就空出一間房.

(1)求該店有客房多少間?房客多少人?

(2)假設店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們如何訂房更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程也可以用來解決一些幾何問題,如圖,PABC內一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,設BPD的面積為,CPE的面積為

(1) ; (填數(shù)字);

(2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P(x3,x+3)x軸上一點,則點P的坐標是(

A.(0,6)B.(0,﹣6)C.(6,0)D.(60)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的菱形ABCD中,∠DAB=60°,以點D為圓心,菱形的高DF為半徑畫弧,交AD于點E,交CD于點G,則圖中陰影部分的面積是(
A.18 ﹣9π
B.18﹣3π
C.9
D.18 ﹣3π

查看答案和解析>>

同步練習冊答案