【題目】計算:
(1)16﹣23+24﹣17
(2)﹣23÷(﹣ )÷(﹣ 2
(3)( )×(﹣18)
(4)(﹣1)10﹣(﹣3)×|

【答案】
(1)解:16﹣23+24﹣17

=40﹣40

=0


(2)解:﹣23÷(﹣ )÷(﹣ 2

=﹣8÷(﹣ )÷

=8


(3)解:( )×(﹣18)

=﹣ ×18+ ×18+ ×18

=﹣6+15+4

=13


(4)解:(﹣1)10﹣(﹣3)×|

=1+3× ×2

=1+1

=2


【解析】(1)根據(jù)加法交換律和減法的性質(zhì)計算即可求解;(2)(4)先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算;(3)根據(jù)乘法分配律計算.
【考點精析】掌握有理數(shù)的四則混合運算是解答本題的根本,需要知道在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠C.若∠ABD的平分線與CD的延長線交于F,且∠F=x°(其中0<x<90),則∠ABC=°,(用含有x的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同側(cè)(如圖1)且AD=CE,請寫出:BA和AC的位置關(guān)系 . (不必證明)
(2)若BC在DE的兩側(cè)(如圖2)其他條件不變,請問(1)中AB與AC的位置關(guān)系還成立嗎?若成立,寫出證明過程;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC中,AB=AC=6,BC=4,∠A=40°.
(1)用尺規(guī)作出邊AB的垂直平分線交AB于點D,交AC于點E(不寫作法,保留作圖痕跡,并在圖中標注字母).
(2)連接BE,求△EBC的周長和∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果﹣2是方程x2﹣m=0的一個根,則m的值為( )
A.2
B.﹣4
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你說明:一個三位數(shù)的百位上的數(shù)字與個位上的數(shù)字交換位置后,新數(shù)與原數(shù)之差能被99整除.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.

(1)填空:點A坐標為 ;拋物線的解析式為

(2)在圖1中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?

(3)在圖2中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示為某汽車行駛的路程S(km)與時間t(min)的函數(shù)關(guān)系圖,觀察圖中所提供的信息解答下列問題:

(1)汽車在前9分鐘內(nèi)的平均速度是多少?
(2)汽車中途停了多長時間?
(3)當16≤t≤30時,求S與t的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若不等式ax-2>0的解集為x<-2,求關(guān)于y的方程ay+2=0的解

查看答案和解析>>

同步練習冊答案