【題目】如圖所示,一次函數(shù)(為常數(shù))的圖象與反比例函數(shù)(為常數(shù),且<0)的圖象交于A,B兩點(diǎn).
(1) 如圖①,當(dāng),時(shí),
① A ( , ),B ( , );
②直接寫出使成立的的取值范圍;
(2) 如圖②,將(1)中直線AB向下平移,交反比例函數(shù)圖像于點(diǎn)C,D,連接OC,AC,若△AOC的面積為8,求的值;
(3) 若A,B兩點(diǎn)的橫坐標(biāo)分別為,,且,滿足,證明:2m-b=-3.
【答案】(1)①A(-2,2),B(2,-2);②或 ; (2)-8 ; (3)詳見解析.
【解析】
(1)①當(dāng),時(shí),代入解析式,聯(lián)合方程組,即可求出A、B的坐標(biāo);
②利用圖像法解不等式,即可得到答案;
(2)作OE⊥CD,先求出OA的長度,然后利用平行線之間的距離和三角形的面積,即可求出b的值;
(3)過點(diǎn)A作y軸的平行線,過點(diǎn)B作x軸的平行線,兩平行線交于點(diǎn)F,設(shè)點(diǎn)A為(m,),點(diǎn)B為(n,),得到,求出點(diǎn)A、B,代入直線的方程,得到,結(jié)合,即可得到結(jié)論成立.
解:(1)①當(dāng),時(shí),有
,,
令,則,
解得:,,
∴點(diǎn)A為(,2),點(diǎn)B為(2,);
②∵,則由圖可知,
的取值范圍是:或;
(2)作OE⊥CD,如圖:
由圖可知,(),,
∴OD=,
∵∠EDO=45°,
∴△ODE為等腰直角三角形,
∴,
∵,
解得:;
(3)證明:過點(diǎn)A作y軸的平行線,過點(diǎn)B作x軸的平行線,兩平行線交于點(diǎn)F,如圖,
∵點(diǎn)A、B在反比例函數(shù)的圖像上,
設(shè)點(diǎn)A為(m,),點(diǎn)B為(n,),
∵直線AB為,
∴∠ABF=45°,
∴△ABF為等腰直角三角形,
∴AF=BF=,
∴,
∴,
∴點(diǎn)A為(m,n),點(diǎn)B為(n,m),
∴,
∵,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB,BC.
求作:平行四邊形ABCD.
以下是甲、乙兩同學(xué)的作業(yè).
甲:
①以點(diǎn)C為圓心,AB長為半徑作。
②以點(diǎn)A為圓心,BC長為半徑作弧;
③兩弧在BC上方交于點(diǎn)D,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖1)
乙:
①連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;
②連接BM并延長,在延長線上取一點(diǎn)D,使MD=MB,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖2)
老師說甲、乙同學(xué)的作圖都正確,你更喜歡______的作法,他的作圖依據(jù)是:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)機(jī)器人從數(shù)軸原點(diǎn)出發(fā),沿?cái)?shù)軸正方向,以每前進(jìn)3步后退2步的程序運(yùn)動(dòng);設(shè)該機(jī)器人每秒鐘前進(jìn)或后退1步,并且每步的距離是1個(gè)單位長,xn表示第n秒時(shí)機(jī)器人在數(shù)軸上的位置所對(duì)應(yīng)的數(shù);給出下列結(jié)論:(1)x3=3;(2)x5=1;(3)x108<x104;其中,正確結(jié)論的序號(hào)是( )
A. (1)、(3)B. (2)、(3)C. (1)、(2)D. (1)、(2)、(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠BAC=32°,斜邊AC=6,將斜邊AC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)26°到達(dá)AD的位置,連接CD,取線段CD的中點(diǎn)N,連接BN,則BN的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和矩形構(gòu)成,矩形的長是,寬是,拱頂到地面的距離是,若以原點(diǎn), 所在的直線為軸, 所在的直線為軸,建立平面直角坐標(biāo)系.
()畫出平面直角坐標(biāo)系,并求出拋物線的函數(shù)表達(dá)式.
()在拋物線型拱壁, 處安裝兩盞燈,它們離地面的高度都是,則這兩盞燈的水平距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=,E是對(duì)角線AC上的動(dòng)點(diǎn),以DE為邊作正方形DEFG,H是CD的中點(diǎn),連接GH,則GH的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn), 以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4 m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2 m,當(dāng)水面下降1 m時(shí),水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,都是由邊長為1的正方體疊成的立體圖形,例如第(1)個(gè)圖形由1個(gè)正方體疊成,第(2)個(gè)圖形由4個(gè)正方體疊成,第(3)個(gè)圖形由10個(gè)正方體疊成,依次規(guī)律,第(8)個(gè)圖形有多少個(gè)正方體疊成( 。
A.120個(gè)B.121個(gè)C.122個(gè)D.123個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com