矩形ABCD中,AB=4,AD=3,P,Q是對角線BD上不重合的兩點,點P關(guān)于直線AD,AB的對稱點分別是點E、F,點Q關(guān)于直線BC、CD的對稱點分別是點G、H.若由點E、F、G、H構(gòu)成的四邊形恰好為菱形,則PQ的長為 .
【答案】
分析:如解答圖所示,本題要點如下:
(1)證明矩形的四個頂點A、B、C、D均在菱形EFGH的邊上,且點A、C分別為各自邊的中點;
(2)證明菱形的邊長等于矩形的對角線長;
(3)求出線段AP的長度,證明△AOP為等腰三角形;
(4)利用勾股定理求出線段OP的長度;
(5)同理求出OQ的長度,從而得到PQ的長度.
解答:解:由矩形ABCD中,AB=4,AD=3,可得對角線AC=BD=5.
依題意畫出圖形,如右圖所示.
由軸對稱性質(zhì)可知,∠PAF+∠PAE=2∠PAB+2∠PAD=2(∠PAB+∠PAD)=180°,
∴點A在菱形EFGH的邊EF上.同理可知,點B、C、D均在菱形EFGH的邊上.
∵AP=AE=AF,∴點A為EF中點.同理可知,點C為GH中點.
連接AC,交BD于點O,則有AF=CG,且AF∥CG,
∴四邊形ACGF為平行四邊形,
∴FG=AC=5,即菱形EFGH的邊長等于矩形ABCD的對角線長.
∴EF=FG=5,
∵AP=AE=AF,∴AP=
EF=2.5.
∵OA=
AC=2.5,
∴AP=AO,即△APO為等腰三角形.
過點A作AN⊥BD交BD于點N,則點N為OP的中點.
由S
△ABD=
AB•AD=
AC•AN,可求得:AN=2.4.
在Rt△AON中,由勾股定理得:ON=
=
=0.7,
∴OP=2ON=1.4;
同理可求得:OQ=1.4,
∴PQ=OP+OQ=1.4+1.4=2.8.
故答案為:2.8.
點評:本題是幾何變換綜合題,難度較大.首先根據(jù)題意畫出圖形,然后結(jié)合軸對稱性質(zhì)、矩形性質(zhì)、菱形性質(zhì)進行分析,明確線段之間的數(shù)量關(guān)系,最后由等腰三角形和勾股定理求得結(jié)果.