【題目】閱讀與計算:請閱讀以下材料,并完成相應(yīng)的任務(wù).

斐波那契(約11701250)是意大利數(shù)學(xué)家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結(jié)果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質(zhì),在實際生活中也有廣泛的應(yīng)用.斐波那契數(shù)列中的第n個數(shù)可以用表示(其中,n≥1).這是用無理數(shù)表示有理數(shù)的一個范例.

任務(wù):請根據(jù)以上材料,通過計算求出斐波那契數(shù)列中的第1個數(shù)和第2個數(shù).

【答案】1個數(shù)為1;2個數(shù)為1.

【解析】試題分析:分別把1、2代入式子化簡求得答案即可.

試題分析:當n=1時

=

=1

當n=2時,

==1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過點A、C,并與y軸交于點E,反比例函數(shù)y= 的圖象經(jīng)過點A.

(1)點E的坐標是;
(2)求反比例函數(shù)的解析式;
(3)求當一次函數(shù)的值小于反比例函數(shù)的值時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某兒童游樂園門票價格規(guī)定如下表:

購票張數(shù)

1~50

51~100

100張以上

每張票的價格

13

11

9

某校七年級(1)、(2)兩個班共102人今年6.1兒童節(jié)去游該游樂園,其中(1)班人數(shù)較少,不足50人。經(jīng)估算,如果兩個班都以班為單位購票,則一共應(yīng)付1218元。問:

(1)兩個班各有多少學(xué)生?

(2)如果兩班聯(lián)合起來,作為一個團體購票,可以節(jié)省多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖計算:

(1)已知△ABC,請用尺規(guī)在圖1中△ABC內(nèi)確定一個點P,使得點PABBC的距離相等,且滿足P到點B和點C的距離相等(不寫作法,保留作圖痕跡)

(2)如圖2,如果點P(1)中求作的點,點EF分別在邊AB、BC上,且PEPF

若∠ABC60°,求∠EPF的度數(shù);

BE2,BF8,EP5,求BP的長.

(3)如圖3,如果點P是△ABC內(nèi)一點,且點P到點B的距離是7,若∠ABC45°,請分別在AB、BC上求作兩個點M、N,使得△PMN的周長最小(不寫作法,保留作圖痕跡),則△PMN的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD,EF分別交AB、CDG、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。

A. 120° B. 125° C. 135° D. 145°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)y2=的圖象分別交于C、D兩點,點D(2,﹣3),點B是線段AD的中點.

(1)求一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的解析式;
(2)求△COD的面積;
(3)直接寫出 k1x+b≥0 時自變量x的取值范圍.
(4)動點P(0,m)在y軸上運動,當 |PCPD| 的值最大時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一點,EC⊥BC,EC=BD,DF=FE.

求證:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由下列條件可判定哪兩條直線平行,并說明根據(jù).

(1)1=2,________________________

(2)A=3,________________________

(3)ABC+C=180°,________________________

查看答案和解析>>

同步練習(xí)冊答案