如圖,在直角坐標(biāo)系xOy中,點(diǎn)A、B在x軸上,以AB為弦的⊙O與y軸相切于E點(diǎn),E點(diǎn)的坐標(biāo)為(0,2),AE的長為數(shù)學(xué)公式
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若D點(diǎn)的坐標(biāo)為(0,-8),拋物線y=ax2+bx+c過D、A、B三點(diǎn),求這拋物線的解析式;
(3)證明上述拋物線的頂點(diǎn)在⊙C上.

解:(1)∵E(0,2),
∴|OE|=2,
又∵|AE|=,
∴|OA|=1,
∵A點(diǎn)在x軸上,
∴A(1,0),
∵E是⊙C的切點(diǎn),由切割線定理知|OE|2=|OA|•|OB|,
∴|OB|=4,
∵B點(diǎn)在x軸上,
∴B(4,0),即所求A,B兩點(diǎn)的坐標(biāo)分別為(1,0),(4,0);

(2)設(shè)過A、B、D三點(diǎn)的拋物線的解析式為y=a(x-1)(x-4)(a≠0),
把D(0,-8)代入上式,解得a=-2.
故所求拋物線的解析式為y=-2x2+10x-8;

(3)∵y=-2x2+10x-8=-2(x-2+,
∴拋物線的頂點(diǎn)坐標(biāo)為P(,),
作AB的中垂線MN,與⊙C在第一象限相交于點(diǎn)M,與x軸相交于點(diǎn)N,則MN必過圓心C,且|ON|=,連接CE,
∵E是切點(diǎn),
∴CE是⊙C的半徑,且CE⊥y軸,
∴四邊形ONCE是矩形,
∴|EC|=|ON|=,|NC|=|OE|=2,
又∵CM是⊙C的半徑,
∴|CM|=|EC|=,
∴|MN|=,
∴M點(diǎn)的坐標(biāo)為(
∴點(diǎn)M與點(diǎn)P的坐標(biāo)相同,即這兩點(diǎn)重合.
∴拋物線的頂點(diǎn)在⊙C上.
分析:(1)先根據(jù)E點(diǎn)坐標(biāo)求出OE的長,再由|AE|=可得出OA的長,故可得出A點(diǎn)坐標(biāo),因?yàn)镋是⊙C的切點(diǎn),所以由切割線定理知|OE|2=|OA|•|OB|,故可得出OB的長,故可得出B點(diǎn)坐標(biāo);
(2)設(shè)過A、B、D三點(diǎn)的拋物線的解析式為y=a(x-1)(x-4)(a≠0),把點(diǎn)D的坐標(biāo)代入求出a的值,故可得出所求拋物線的解析式;
(3)由(2)中拋物線的解析式得出其頂點(diǎn)坐標(biāo),作AB的中垂線MN,與⊙C在第一象限相交于點(diǎn)M,與x軸相交于點(diǎn)N,則MN必過圓心C,且|ON|=,連接CE,由E是切點(diǎn)可知CE是⊙C的半徑,且CE⊥y軸,故四邊形ONCE是矩形,故可得出|EC|=|ON|=,|NC|=|OE|=2,再由CM是⊙C的半徑可知|CM|=|EC|=,故可得出MN的長度,由此可得出M點(diǎn)的坐標(biāo),因?yàn)辄c(diǎn)M與點(diǎn)P的坐標(biāo)相同,所以這兩點(diǎn)重合,故可得出結(jié)論.
點(diǎn)評:本題考查的是二次函數(shù)綜合題,涉及到勾股定理、切割線定理、用待定系數(shù)法求二次函數(shù)的解析式及矩形的判定與性質(zhì)等相關(guān)知識,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,⊙M與y軸相切于點(diǎn)C,與x軸交于A(x1,0),B(x2,0)兩點(diǎn),其中x1,x2是方程x2-10x+16=0的兩個(gè)根,且x1<x2,連接MC,過A、B、C三點(diǎn)的拋物線的頂點(diǎn)為N.
(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關(guān)系,并說明理由;
(3)一動點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位長的速度沿CM向點(diǎn)M運(yùn)動,同時(shí),一動點(diǎn)Q從點(diǎn)B出發(fā),沿射線BA以每秒4個(gè)單位長度的速度運(yùn)動,當(dāng)P運(yùn)動到M點(diǎn)時(shí),兩動點(diǎn)同時(shí)停止運(yùn)動,當(dāng)時(shí)間t為何值時(shí),以Q、O、C為頂點(diǎn)的三角形與△PCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中放入一邊長OC為6的矩形紙片ABCO,將紙翻折后,使點(diǎn)B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點(diǎn)的坐標(biāo);
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過G點(diǎn),以O(shè)為圓心OG的長為精英家教網(wǎng)半徑的圓與拋物線是否還有除G點(diǎn)以外的交點(diǎn)?若有,請找出這個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已如:如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,AB為⊙C的直徑,PA切⊙O于點(diǎn)A,交x軸的負(fù)半軸于點(diǎn)P,連接PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動,原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形
POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB,若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫過程);若不存在,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個(gè)點(diǎn).
(1)順次連接A,B,C,D四個(gè)點(diǎn)組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個(gè)單位向右3個(gè)單位后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點(diǎn)的坐標(biāo);
(2)以A為直角頂點(diǎn)作等腰直角三角形△ADB,直接寫出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)B在第四象限時(shí),將△ADB沿直線BD翻折得到△A′DB,點(diǎn)P為線段BD上一動點(diǎn)(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案