【題目】ABC中,ABAC,AC的垂直平分線DEAC于點(diǎn)D,交BC于點(diǎn)E,且∠BAE90°,若DE1,則BE=( 。

A.4B.3C.2D.無法確定

【答案】A

【解析】

由于ABAC,AC的垂直平分線DEAC于點(diǎn)D,根據(jù)線段的垂直平分線的性質(zhì)得到AECE,再根據(jù)等邊對(duì)等角得到∠C=∠CAE,再根據(jù)∠BAE90°,即可求出∠B的度數(shù),利用含30°的直角三角形的性質(zhì)解答.

解:∵ABAC

∴∠B=∠C,

又∵AC邊的垂直平分線交BC于點(diǎn)E

AECE,

∴∠CAE=∠C

∴∠B+C+BAE+CAE180°,即3B+90°180°,

∴∠B30°

∴∠C30°

DE1

EC2AE,

BE4,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高為1m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.

根據(jù)設(shè)計(jì)圖紙已知:在圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是

(1)噴出的水流距水平面的最大高度是多少?

(2)如果不計(jì)其他因素,那么水池的半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對(duì)任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因?yàn)?2-1>6-2>4-3,所以34是最佳分解,所以F(n)=。

(1)如果一個(gè)正整數(shù)是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1

(2)如果一個(gè)兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們就稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD100°,∠B=∠D90°,在BC、CD上分別找一個(gè)點(diǎn)MN,使AMN的周長(zhǎng)最小,則∠AMN+ANM的度數(shù)為( 。

A.130°B.120°C.160°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ABAC12cm,∠B=∠CBC8cm,點(diǎn)DAB的中點(diǎn).

1)如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,BPDCQP是否全等,請(qǐng)說明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿ABC三邊運(yùn)動(dòng),則經(jīng)過   后,點(diǎn)P與點(diǎn)Q第一次在ABC   邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD是線段AB的垂直平分線,則∠CAD=CBD.請(qǐng)說明理由.

解:∵CD是線段AB的垂直平分線(已知),

AC=______,______=BD______

ADC______中,

______=BC,

AD=______,

CD=____________),

__________________ 。

∴∠CAD=CBD (全等三角形的對(duì)應(yīng)角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,ABAC,∠BAC90°,∠1=∠2,CEBDBD的延長(zhǎng)線于點(diǎn)E,CE1,延長(zhǎng)CE、BA交于點(diǎn)F

1)求證:ADB≌△AFC;

2)求BD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】右圖是老北京城一些地點(diǎn)的分布示意圖.在圖中,分別以正東、正北方向?yàn)?/span>軸、軸的正方向建立平面直角坐標(biāo)系,有如下四個(gè)結(jié)論:

①當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(0,0),表示廣安門的點(diǎn)的坐標(biāo)為()時(shí),表示左安門的點(diǎn)的坐標(biāo)為(5,);

②當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(0,0),表示廣安門的點(diǎn)的坐標(biāo)為()時(shí),表示左安門的點(diǎn)的坐標(biāo)為(10,);

③當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(1,1),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為();

④當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(,).

上述結(jié)論中,所有正確結(jié)論的序號(hào)是

A. ①②③ B. ②③④ C. ①④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案