【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
【答案】(1)125°;(2)證明見解析
【解析】試題分析:(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根據(jù)平行線的性質(zhì)得到∠EFG=∠1=35°,再根據(jù)角的和差關(guān)系可求∠GFC的度數(shù);
(2)根據(jù)平行線的性質(zhì)得到∠2=∠CBD,等量代換得到∠1=∠CBD,根據(jù)平行線的判定定理得到GF∥BC,證得MD∥GF,根據(jù)平行線的性質(zhì)即可得到結(jié)論.
試題解析:解:(1)∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;
(2)∵BD∥EF,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC.∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米.點P、點Q是直線上的兩個動點,點P的速度為1厘米/秒,點Q的速度為2厘米/秒.點P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“母親節(jié)”前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.
(1)求降價后每枝玫瑰的售價是多少元?
(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進兩種鮮花共500枝,康乃馨進價為2元/枝,玫瑰進價為1.5元/枝,問至少購進玫瑰多少枝?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD各頂點的坐標分別為(-2,8),(-11,6),(-14,0),(0,0).
(1)確定這個四邊形的面積,你是怎樣做的?
(2)如果把四邊形ABCD各頂點縱坐標保持不變,橫坐標增加2,所得的四邊形面積又是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用繩子量井深:把繩子三折來量,井外余4尺;把繩子四折來量,井外余1尺,則井深和繩長分別是 ( )
A、8尺,36尺B、3尺,13尺C、10尺,34尺D、11尺,37尺
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的結(jié)論是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在Rt△ABC中,∠ACB=90°,AE平分∠BAC交BC于點E,D為AC上的點,BE=DE.
(1)求證:∠B+∠EDA=180°;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8,點O在AC上,OA=2,以OA為半徑的⊙O交AB于點D,AC于G,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)求證:直線DE是⊙O的切線;
(2)求線段DE的長;
(3)求線段AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com