【題目】如圖,在△ABC中,CD、BE為高,AN為角平分線,OM平分∠BOC交BC于M.
(1) 若∠BAC=,求∠BOM;
(2) 求證: OM∥AN.
【答案】(1)∠BOM=90°-;(2)見解析.
【解析】
(1)根據(jù)三角形的內(nèi)角和和三角形的外角知識(shí)進(jìn)行解答即可;(2) 設(shè)AN交CD于H點(diǎn),利用三角形的內(nèi)角和得到∠CHN=90°-,最后根據(jù)同位角相等,兩直線平行,即可完成解答.
解:(1)
∵∠BAC=
∴∠ACD=90°-
∵∠BOC是△CEO的外角
∴∠BOC=∠CEB+∠ACD=90°+90°-=180°-
∴∠BOM=∠BOC= 90°-=∠COM
(2) 設(shè)AN交CD于H點(diǎn)
∠CHN=+90°-=90°-
∴∠CHN=∠COM
∴OM∥AN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于C、D兩點(diǎn),與雙曲線在第一象限內(nèi)交于點(diǎn)P,過點(diǎn)P作PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,已知B(0,4)且S△DBP=27.
(1)直接寫出直線的解析式_____________,雙曲線的解析式____________;
(2)設(shè)點(diǎn)Q是直線上的一點(diǎn),且滿足△DOQ的面積是△COD面積的2倍,請求出點(diǎn)Q的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加“荊州市中小學(xué)生首屆詩詞大會(huì)”,某校八年級的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:
班級 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個(gè)班前5名同學(xué)的成績較好?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC的斜邊AB=6 cm,直角邊AC=3 cm.
(1)以C為圓心,2 cm長為半徑的圓和AB的位置關(guān)系是_________;
(2)以C為圓心,4 cm長為半徑的圓和AB的位置關(guān)系是_________;
(3)如果以C為圓心的圓和AB相切,則半徑長為_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,D為AC的中點(diǎn),,則和△AED(不包含△AED)相似的三角形有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,AD=m,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),連接CP,作點(diǎn)D關(guān)于直線PC的對稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)若m=6,求當(dāng)P,E,B三點(diǎn)在同一直線上時(shí)對應(yīng)的t的值.
(2)已知m滿足:在動(dòng)點(diǎn)P從點(diǎn)D到點(diǎn)A的整個(gè)運(yùn)動(dòng)過程中,有且只有一個(gè)時(shí)刻t,使點(diǎn)E到直線BC的距離等于3,求所有這樣的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)點(diǎn)坐標(biāo)分別為A(-2,-1),B(-1,1),C(0,-2).
(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對稱的點(diǎn)的坐標(biāo)為____________.
(2)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C1;
(3)以點(diǎn)O為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的相似比為1:2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,①等腰三角形兩腰上的高相等;②在空間中,垂直于同一直線的兩直線平行;③兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等;④一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行, 則這兩個(gè)角相等. 其中真命題的個(gè)數(shù)有 __________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、與相交于點(diǎn),形成了個(gè)角.
(1)圖中,與有一條公共邊,它們的另一邊互為反向延長線,具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角.這樣的鄰補(bǔ)角還有以下幾對,它們分別是____________、__________、______________.
(2)圖中,與有一個(gè)公共頂點(diǎn),且的兩邊分別是的反向延長線,具有這種位置關(guān)系的兩個(gè)角,互為對頂角.這樣的對頂角還有一對,它們是________與___________.
(3)因?yàn)?/span>______________,____________所以______(填寫或或)理由是____________由此能得到的結(jié)論是:對頂角_____________
(4)用您所學(xué)知識(shí)可得___________(精確到度).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com