【題目】如圖,△ABC是直角三角形,∠BAC=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的點,且DE⊥DF.
(1)如圖1,試說明;
(2)如圖2,若AB=AC,BE=12,CF=5,求△DEF的面積.
【答案】(1)、略 (2)、
【解析】
(1)延長ED至G,使得DG=DE,根據(jù)△CDG≌△BDE,得到CG=BE;
(2)根據(jù)∠FCG=90°得到CG+CF=FG,根據(jù)中垂線的性質(zhì)得到FG=EF,從而得到所求的結(jié)論.
(1)證明:延長ED至點G,使得DG=DE,連接FG,CG,
∵DE=DG,DF⊥DE,
∴DF垂直平分DE,
∴EF=FG,
∵D是BC中點,
∴BD=CD,
在△BDE和△CDG中,
,
∴△BDE≌△CDG(SAS),
∴BE=CG,∠DCG=∠DBE,
∵∠ACB+∠DBE=90°,
∴∠ACB+∠DCG=90°,即∠FCG=90°,
∵CG2+CF2=FG2,
∴BE2+CF2=EF2;
(2)解:連接AD,
∵AB=AC,D是BC中點,
∴∠BAD=∠C=45°,AD=BD=CD,
∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF,BE=AF,AB=AC=17,
∴S四邊形AEDF=S△ABC,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點上,建立平面直角坐標(biāo)系如圖所示.若P是x軸上使得的值最大的點,Q是y軸上使得QA十QB的值最小的點,則= ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i為1∶,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥HC.則A,B兩點間的距離是( )
A. 15米 B. 20米 C. 20米 D. 10米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組觀察下雨天學(xué)校池塘水面高度h(單位:cm)與觀察時間t(單位:min)的關(guān)系,并根據(jù)當(dāng)天觀察數(shù)據(jù)畫出了如圖所示的圖象,請你結(jié)合圖象回答下列問題:
(1)求線段BC的表達式;
(2)試求出池塘原有水面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點,與y軸交于點C,連接BC,點D為拋物線的頂點,點P是第四象限的拋物線上的一個動點(不與點D重合).
(1)求∠OBC的度數(shù);
(2)連接CD,BD,DP,延長DP交x軸正半軸于點E,且S△OCE=S四邊形OCDB,求此時P點的坐標(biāo);
(3)過點P作PF⊥x軸交BC于點F,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x +m和y=-x +n的圖象都是經(jīng)過點A(-2,0),且與y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標(biāo)B: ;C:
(2)求ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關(guān)于直線l的對稱點A′的坐標(biāo)為(2,0),請在圖中分別標(biāo)明B(5,3)、C(﹣2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出他們的坐標(biāo):B′ 、C′ ;
歸納與發(fā)現(xiàn):
(2)結(jié)合圖形觀察以上三組點的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點P(a,b)關(guān)于第一、三象限的角平分線l的對稱點P′的坐標(biāo)為 ;
運用與拓廣:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點P是CD邊上一動點,連接PA,分別過點B、D作BE⊥PA、DF⊥PA,垂足分別為E、F,如圖①。
(1)請?zhí)骄?/span>BE、DF、EF這三條線段的長度具有怎樣的數(shù)量關(guān)系?并說明理由。
(2)若點P在DC的延長線上,如圖②,那么這三條線段的長度之間又具有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論。
(3)若點P在CD的延長線上呢,如圖③,直接寫出結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(﹣4,2),B(﹣1,﹣2),平行四邊形ABCD的對角線交于坐標(biāo)原點O.
(1)請直接寫出點C、D的坐標(biāo);
(2)寫出從線段AB到線段CD的變換過程;
(3)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com