(2010•蘭州)如圖,正三角形的內(nèi)切圓半徑為1,那么三角形的邊長為( )

A.2
B.
C.
D.3
【答案】分析:欲求三角形的邊長,已知內(nèi)切圓半徑,可過內(nèi)心向正三角形的一邊作垂線,連接頂點與內(nèi)切圓心,構(gòu)造直角三角形求解.
解答:解:過O點作OD⊥AB,則OD=1;
∵O是△ABC的內(nèi)心,
∴∠OAD=30°;
Rt△OAD中,∠OAD=30°,OD=1,
∴AD=OD•cot30°=,
∴AB=2AD=2
故選B.
點評:解這類題一般都利用過內(nèi)心向正三角形的一邊作垂線,則正三角形的半徑、內(nèi)切圓半徑和正三角形邊長的一半構(gòu)成一個直角三角形,解這個直角三角形,可求出相關(guān)的邊長或角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2010•蘭州)如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了一個簡易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,則繩子的最低點距地面的距離為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•蘭州)如圖1,已知矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過坐標(biāo)原點O和x軸上另一點E(4,0)
(1)當(dāng)x取何值時,該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個單位長度的速度從圖1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動.設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當(dāng)t=時,判斷點P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點的多邊形面積是否可能為5?若有可能,求出此時N點的坐標(biāo);若無可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘭州)如圖1,已知矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過坐標(biāo)原點O和x軸上另一點E(4,0)
(1)當(dāng)x取何值時,該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個單位長度的速度從圖1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動.設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當(dāng)t=時,判斷點P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點的多邊形面積是否可能為5?若有可能,求出此時N點的坐標(biāo);若無可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘭州)如圖,P1是反比例函數(shù)y=(k>0)在第一象限圖象上的一點,點A1的坐標(biāo)為(2,0).
(1)當(dāng)點P1的橫坐標(biāo)逐漸增大時,△P1OA1的面積將如何變化?
(2)若△P1OA1與△P2A1A2均為等邊三角形,求此反比例函數(shù)的解析式及A2點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•蘭州)如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了一個簡易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,則繩子的最低點距地面的距離為    米.

查看答案和解析>>

同步練習(xí)冊答案