【題目】如圖在平面直角坐標系中頂點為點M的拋物線是由拋物線向右平移1個單位得到的,它與y軸負半軸交于點A,點B在拋物線上,且橫坐標為3.
寫出以M為頂點的拋物線解析式.
連接AB,AM,BM,求;
點P是頂點為M的拋物線上一點,且位于對稱軸的右側,設PO與x正半軸的夾角為,當時,求點P坐標.
【答案】(1);(2);(3)點P的坐標為或
【解析】
根據(jù)向右平移橫坐標加寫出平移后的拋物線解析式,然后寫出頂點M的坐標,令求出A點的坐標,把代入函數(shù)解析式求出點B的坐標;
過點B作于E,過點M作于M,然后求出,同理求出,然后求出和相似,根據(jù)相似三角形對應邊成比例列式求出,再求出,然后根據(jù)銳角的正切等于對邊比鄰邊列式即可得解;
過點P作軸于H,分點P在x軸的上方和下方兩種情況利用的正切值列出方程求解即可.
拋物線向右平移一個單位后得到的函數(shù)解析式為,
頂點,
令,則,
點,
時,,
點;
過點B作于E,過點M作于M,
,
,
同理可求,
∽,
,
又,
;
過點P作軸于H,
,
設點,
點P在x軸的上方時,,
整理得,,
解得舍去,,
點P的坐標為;
點P在x軸下方時,,
整理得,,
解得舍去,,
時,,
點P的坐標為
綜上所述,點P的坐標為或
科目:初中數(shù)學 來源: 題型:
【題目】已知,等腰直角△ABC在平面直角坐標系中的位置如圖,點A(0,a),點B(b,0),點C在第四象限,且滿足a2+b2-4a+12b+40=0.
(1)求點C的坐標;
(2)若AC交x軸于M,BC交y軸于D,E是AC上一點,且CE=AM,連DM,求證:AD+DE=BM;
(3)在y軸上取點F(0,6),點H是y軸上F下方任一點,作HG⊥BH交射線CF于G,在點H位置變化的過程中,是否為定值,若是,求其值,若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AE平分∠BAD,DE平分∠ADC.
(1)如果∠B+∠C=120°,則∠AED的度數(shù)=______.(直接寫出結果)
(2)根據(jù)⑴的結論,猜想∠B+∠C與∠AED之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(),在四邊形中,,,,,分別是,上的點,且.探究圖中線段,,之間的數(shù)量關系.小王同學探究此問題的方法是,延長到點,使,連接,先證明≌,再證明≌,可得出結論,他的結論應該是__________.
如圖(),若在四邊形中,,,,分別是,上的點,且,上述結論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】無錫市靈山勝境公司廠生產一種新的大佛紀念品,每件紀念品制造成本為18元,試銷過程發(fā)現(xiàn),每月銷量萬件與銷售單價元之間的關系可以近似地看作一次函數(shù).
寫出公司每月的利潤萬元與銷售單價元之間函數(shù)解析式;
當銷售單價為多少元時,公司每月能夠獲得最大利潤?最大利潤是多少?
根據(jù)工商部門規(guī)定,這種紀念品的銷售單價不得高于32元如果公司要獲得每月不低于350萬元的利潤,那么制造這種紀念品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com