【題目】如圖,OA是⊙M的直徑,點(diǎn)B在x軸上,連接AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A的坐標(biāo)為(0,2),∠ABO=30°,求點(diǎn)B的坐標(biāo).
(2)若D為OB的中點(diǎn),求證:直線CD是⊙O的切線.
【答案】
(1)解:∵A的坐標(biāo)為(0,2)
∴OA=2,
∵∠ABO=30°,∠AOB=90°,
∴AB=2OA=4,
∴由勾股定理可知:OB=2 ,
∴B(2 ,0)
(2)解:連接OC,MC
∵OA是⊙M的直徑,
∴∠ACO=90°,
∴∠OCB=90°,
在Rt△OCB中,D為OB的中點(diǎn),
∴CD= OB=OD,
∴∠DCO=∠DOC,
∵M(jìn)C=MO,
∴∠OCM=∠COM
∵∠MOC+∠DOC=∠AOB=90°,
∴∠MCO+∠DCO=∠MCD=90°
即MC⊥CD
∴直線CD是⊙M的切線.
【解析】(1)由點(diǎn)A的坐標(biāo)可知OA的長度,根據(jù)∠ABO的度數(shù)可知,AB的長度為4,利用勾股定理即可求出OB的長度,從而求出B的坐標(biāo).(2)連接OC、MC、證明∠OCB為直角,根據(jù)D為OB的中點(diǎn),可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求證MC⊥CD.
【考點(diǎn)精析】本題主要考查了切線的判定定理的相關(guān)知識點(diǎn),需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B(3,3)在雙曲線y= (x>0)上,點(diǎn)D在雙曲線y=﹣ (x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,且點(diǎn)A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
如圖1,等邊△ABC中,BC=4,點(diǎn)P從點(diǎn)B出發(fā),沿BC方向運(yùn)動到點(diǎn)C,點(diǎn)P關(guān)于直線AB、AC的對稱點(diǎn)分別為點(diǎn)M、N,連接MN.
(1)【發(fā)現(xiàn)】
當(dāng)點(diǎn)P與點(diǎn)B重合時,線段MN的長是 .
當(dāng)AP的長最小時,線段MN的長是;
(2)【探究】
如圖2,設(shè)PB=x,MN2=y,連接PM、PN,分別交AB,AC于點(diǎn)D,E.
用含x的代數(shù)式表示PM= , PN=;
(3)求y關(guān)于x的函數(shù)關(guān)系式,并寫出y的取值范圍;
(4)當(dāng)點(diǎn)P在直線BC上的什么位置時,線段MN=3 (直接寫出答案)
(5)【拓展】
如圖3,求線段MN的中點(diǎn)K經(jīng)過的路線長.
(6)【應(yīng)用】
如圖4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,點(diǎn)P、Q、R分別為邊BC、AB、AC上(均不與端點(diǎn)重合)的動點(diǎn),則△PQR周長的最小值是 .
(可能用到的數(shù)值:sin75°= ,cos75°= ,tan75°=2+ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某地從九年級學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次考前體育科目測試,把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格,并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)請將兩幅不完整的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該地參加中考的學(xué)生將有4500名,根據(jù)測試情況請你估計(jì)不及格的人數(shù)有多少?
(3)從被抽測的學(xué)生中任選一名學(xué)生,則這名學(xué)生成績是D級的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),對角線OB= ,反比例函數(shù) 經(jīng)過點(diǎn)C,則k的值等于( )
A.12
B.8
C.15
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線 y=﹣ x2平移后過點(diǎn)A(8,0)和原點(diǎn),頂點(diǎn)為B,對稱軸與x軸相交于點(diǎn)C,與原拋物線相交于點(diǎn)D.
(1)求平移后拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)直接寫出陰影部分的面積 S陰影;
(3)如圖(2),直線AB與y軸相交于點(diǎn)P,點(diǎn)M為線段OA上一動點(diǎn)(點(diǎn)M不與點(diǎn)A,O重合 ),∠PMN為直角,MN與AP相交于點(diǎn)N,設(shè)OM=t,試探究:t為何值時,△MAN為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個有進(jìn)水管與出水管的容器,從某時刻開始4min內(nèi)只進(jìn)水不出水,在隨后的8min內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量有兩個常數(shù),容器內(nèi)的水量y(單位:L)與時間x(單位:min)之間的關(guān)系如圖所示.
(1)當(dāng)4≤x≤12時,求y關(guān)于x的函數(shù)解析式;
(2)直接寫出每分進(jìn)水,出水各多少升.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com