【題目】閱讀下面材料:
如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2=交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2,即通過觀察函數的圖象,可以得到不等式ax+b>的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據學習以上知識的經驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進行轉化:
當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1>;
當x<0時,原不等式可以轉化為x2+4x﹣1<;
(2)構造函數,畫出圖象
設y3=x2+4x﹣1,y4=,在同一坐標系中分別畫出這兩個函數的圖象.
雙曲線y4=如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數圖象公共點的橫坐標
觀察所畫兩個函數的圖象,猜想并通過代入函數解析式驗證可知:滿足y3=y4的所有x的值為 ;
(4)借助圖象,寫出解集
結合(1)的討論結果,觀察兩個函數的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
【答案】(2)見試題解析;(3)±1和﹣4;(4)x>1或﹣4<x<﹣1.
【解析】
試題分析:(2)首先確定二次函數的對稱軸,然后確定兩個點即可作出二次函數的圖象;
(3)根據圖象即可直接求解;
(4)根據已知不等式x3+4x2﹣x﹣4>0即當x>0時,x2+4x﹣1>,;當x<0時,x2+4x﹣1<,根據圖象即可直接寫出答案.
試題解析:(2)
;
(3)兩個函數圖象公共點的橫坐標是±1和﹣4.
則滿足y3=y4的所有x的值為±1和﹣4.
故答案是:±1和﹣4;
(4)不等式x3+4x2﹣x﹣4>0即當x>0時,x2+4x﹣1>,此時x的范圍是:x>1;
當x<0時,x2+4x﹣1<,則﹣4<x<﹣1.
故答案是:x>1或﹣4<x<﹣1.
科目:初中數學 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個數有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列事件為隨機事件的是( )
A.晚上7:00央視1套播放新聞
B.任意畫一個四邊形內角和是360°
C.在裝有7個黑球3個白球的布袋中摸4個球,一定有黑球
D.擲一枚質地均勻的硬幣10次,正面朝上5次
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點F,連接CD,EB.
(1)圖中還有幾對全等三角形,請你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算下列各式.
(1)3 +(﹣ )﹣(﹣ )+2
(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣ )2
(3)4 ×[﹣9×(﹣ )2﹣0.8]÷(﹣5 );
(4)( + ﹣ )×(﹣12)
(5)﹣24﹣[(﹣3)2﹣(1﹣23× )÷(﹣2)]
(6)(﹣96)×(﹣0.125)+96× +(﹣96)×
(7)(3a﹣2)﹣3(a﹣5)
(8)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)
(9)x﹣2[y+2x﹣(3x﹣y)]
(10)m﹣2(m﹣ n2)﹣( m﹣ n2).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知射線OC上的任意一點到∠AOB的兩邊的距離都相等,點D、E、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個條件中的某一個即可,請寫出所有可能的條件的序號__________.
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com