【題目】如圖,拋物線y=x2+bx+c與直線y=x﹣1交于A、B兩點(diǎn).點(diǎn)A的橫坐標(biāo)為﹣3,點(diǎn)B在y軸上,點(diǎn)P是y軸左側(cè)拋物線上的一動(dòng)點(diǎn),橫坐標(biāo)為m,過(guò)點(diǎn)P作PC⊥x軸于C,交直線AB于D.

(1)求拋物線的解析式;

(2)當(dāng)m為何值時(shí),S四邊形OBDC=2SBPD;

(3)是否存在點(diǎn)P,使△PAD是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

【答案】1y=x2+4x1;(2m=,﹣2時(shí)S四邊形OBDC=2SBPD;

3P(﹣2,﹣5).

【解析】分析:(1)將x=0代入y=x-1求出B的坐標(biāo),將x=-3代入y=x-1求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;

(2)由P點(diǎn)的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),由此表示出S四邊形OBDC2SBPD建立方程求出其解即可.

(3)如圖2,當(dāng)∠APD=90°時(shí),設(shè)出P點(diǎn)的坐標(biāo),就可以表示出D的坐標(biāo),由APD∽△FCD列出比例式求解即可;如圖3,當(dāng)∠PAD=90°時(shí),作AEx軸于E,根據(jù)比例式表示出AD,再由PAD∽△FEA列出比例式求解.

詳解:(1)y=x﹣1,

∴當(dāng)x=0時(shí),y=﹣1,

B(0,﹣1).

當(dāng)x=﹣3時(shí),y=﹣4,

A(﹣3,﹣4).

y=x2+bx+c與直線y=x﹣1交于AB兩點(diǎn),

,

∴拋物線的解析式為:y=x2+4x﹣1;

(2)P點(diǎn)橫坐標(biāo)是mm<0),

Pm,m2+4m﹣1),Dm,m﹣1)

如圖1①,作BEPCE,

BE=﹣m

CD=1﹣m,OB=1,OC=﹣m,CP=1﹣4mm2,

PD=1﹣4mm2﹣1+m=﹣3mm2,

,

解得:m1=0(舍去),m2=﹣2,m3=﹣

如圖1②,作BEPCE,

BE=﹣m

PD= m2+4m- 1-m+1= m2+3m,

,

解得:m=0(舍去)或m=(正值舍去),

m=﹣,﹣2時(shí)S四邊形OBDC=2SBPD;

(3))如圖2,

當(dāng)∠APD=90°時(shí),設(shè)Pm,m2+4m﹣1),則Dm,m﹣1),

AP=m+4,CD=1﹣m,OC=﹣m,CP=1﹣4mm2,

DP=1﹣4mm2﹣1+m=﹣3mm2

y=x﹣1中,當(dāng)y=0時(shí),x=1,

(1,0),

OF=1,

CF=1﹣mAF=4

PCx軸,

∴∠PCF=90°,

∴∠PCF=APD,

CFAP,

∴△APD∽△FCD,,

,

解得:m=1(舍去)m=﹣2,

P(﹣2,﹣5)

如圖3,當(dāng)∠PAD=90°時(shí),作AEx軸于E

∴∠AEF=90°.CE=﹣3﹣m,EF=4,AF=4PD=1﹣m﹣(1﹣4mm2)=3m+m2

PCx軸,

∴∠DCF=90°,

∴∠DCF=AEF,

AECD

,

AD=(﹣3﹣m).

∵△PAD∽△FEA,

,

,

m=﹣2m=﹣3

P(﹣2,﹣5)或(﹣3,﹣4)與點(diǎn)A重合,舍去,

P(﹣2,﹣5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果A、BC三點(diǎn)在同一直線上,且線段AB=6 cmBC=4 cm,若M,N分別為AB,BC的中點(diǎn),那么M,N兩點(diǎn)之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019101日,中華人民共和國(guó)成立70周年,成都市民通過(guò)各種方式觀看了國(guó)慶閱兵直播.武侯區(qū)某街道辦為了解居民的“觀看方式”和 “最喜歡的分列式方隊(duì)”的情況,隨機(jī)調(diào)查了本街道部分居民(每位被調(diào)查者需完成以上兩個(gè)方面的問(wèn)題),并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,其中通過(guò)“電視端“方式觀看的居民有320人.

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1)求本次隨機(jī)調(diào)查的總?cè)藬?shù);

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若武侯區(qū)該街道居民約有60000人,試估計(jì)其中最喜歡護(hù)旗方隊(duì)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五邊形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分別找一點(diǎn)M、N,若要使△AMN的周長(zhǎng)最小時(shí),則△AMN的最小周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由邊長(zhǎng)為1 的正方體搭成的立體圖形,第(1)個(gè)圖形由1個(gè)正方體搭成,第(2)個(gè)圖形由4個(gè)正方體搭成,第(3)個(gè)圖形由10個(gè)正方體搭成,以此類推,搭成第(6)個(gè)圖形所需要的正方體個(gè)數(shù)是(

A.84個(gè)B.56個(gè)C.37個(gè)D.36個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗. 我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整) 請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以E(3,0)為圓心,5為半徑的☉Ex軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為F.

(1)A,B,C三點(diǎn)的坐標(biāo);

(2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);

(3)已知M為拋物線上的一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:①若以A,B,M為頂點(diǎn)的三角形面積與ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);

②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF與☉E的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次大型活動(dòng),組委會(huì)啟用無(wú)人機(jī)航拍活動(dòng)過(guò)程,在操控?zé)o人機(jī)時(shí)應(yīng)根據(jù)現(xiàn)場(chǎng)狀況調(diào)節(jié)高度,已知無(wú)人機(jī)在上升和下降過(guò)程中速度相同,設(shè)無(wú)人機(jī)的飛行高度為y(米),操控?zé)o人機(jī)的時(shí)間為x(分),yx之間的函數(shù)圖像如圖所示.

1)無(wú)人機(jī)的速度為________米/分;

2)求線段BC所表示的yx之間函數(shù)表達(dá)式;

3)無(wú)人機(jī)在50米上空持續(xù)飛行時(shí)間為_________分.(直接填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖1,正方形ABCD,△CEF為等腰直角三角形,其中∠CFE90°,CFEF,連接CE,AE,AC,點(diǎn)GAE的中點(diǎn),連接FG

1)用等式表示線段BFFG的數(shù)量關(guān)系是   

2)若將△CEF繞頂點(diǎn)C旋轉(zhuǎn),使得點(diǎn)F恰好在線段AC上,并且點(diǎn)E在線段AC的上方,點(diǎn)G仍是AE的中點(diǎn),連接FGDF

在圖2中依據(jù)題意補(bǔ)全圖形;

求證:DFFG

查看答案和解析>>

同步練習(xí)冊(cè)答案