【題目】如圖,在中,,以為直徑的相交于點E,連接CE

1)求證:;

2)如果的面積為3,求的面積;

3)如圖的角平分線BDAC于點D,于點于點F,連接,求證:

【答案】1)見解析;(26;(3)見解析

【解析】

1)利用直角和公共角證相似;

2)利用等腰直角三角形得到的相似比,再結(jié)合相似三角形面積比等于相似比的平方即可;

3)設(shè)交于點M,由圖的角平分線BD,可得CD=CM,再結(jié)合三線合一可得 ,最后由半徑相等得,可得內(nèi)錯角相等,所以

(1)∵為⊙的直徑,

,

又∵

2)∵,

Rt中,由勾股定理,得

,

,即的面積等于6

3)設(shè)交于點M

平分,

,

,

,

平分

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,中,.動點的邊上按的路線勻速移動,當(dāng)點到達(dá)點時停止移動;動點的速度在的邊上按的路線勻速移動,當(dāng)點到達(dá)點時停止移動.已知點、點同時開始移動,同時停止移動(即同時到達(dá)各自的終止位置).設(shè)動點移動的時間為的面積為,的函數(shù)關(guān)系如圖②所示.

(1)圖①中  ,圖②中  ;

(2)的函數(shù)表達(dá)式;

(3)當(dāng)為何值時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是弧的中點,作點關(guān)于弦的對稱點,連接并延長交于點,過點于點,若,則等于_________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數(shù)y(k≠0x0)的圖象經(jīng)過頂點C、D,若點C的橫坐標(biāo)為5,BE3DE,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在AOB中,AOB90°,OA6OB8,動點Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0t≤5),以P為圓心,PA長為半徑的PAB、OA的另一個交點分別為C、D,連結(jié)CD、CQ

當(dāng)點Q與點D重合時,求t的值;

ACQ是等腰三角形,求t的值;

P與線段QC只有一個公共點,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知菱形ABCD中,對角線ACBD相交于點O,AC8,BD6,動點P在邊AB上運動,以點O為圓心,OP為半徑作⊙OCQ切⊙O于點Q.則在點P運動過程中,切線CQ的長的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于點A,B,與y軸交于點C.點P是該函數(shù)圖象上的動點,且位于第一象限,設(shè)點P的橫坐標(biāo)為x

1)寫出線段AC, BC的長度:AC= ,BC=

2)記BCP的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;

3)過點PPHBC,垂足為H,連結(jié)AH,AP,設(shè)APBC交于點K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請求出的值;若不存在,請說明理由,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五張正面分別寫有數(shù)字:﹣3,﹣2,0,12的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.

1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不小于1的概率是 

2)先從中任意抽取一張卡片,以其正面數(shù)字作為m的值,然后再從剩余的卡片中隨機(jī)抽一張,以其正面的數(shù)字作為n的值,請用列表法或畫樹狀圖法,求點Qm,n)在第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線x軸相交于A、B兩點(AB右),與y軸交于點C.其頂點為D

1)求點D的坐標(biāo)和直線BC對應(yīng)的一次函數(shù)關(guān)系式;

2)若正方形PQMN的一邊PQ在線段AB上,另兩個頂點M、N分別在BCAC上,試求M、N兩點的坐標(biāo);

3)如圖1,E是線段BC上的動點,過點EDE的垂線交BD于點F,求DF的最小值.

(圖1 (圖2

查看答案和解析>>

同步練習(xí)冊答案