【題目】如圖是某工件的三視圖,則此工件的表面積為(  )
A.15πcm2
B.51πcm2
C.66πcm2
D.24πcm2

【答案】D
【解析】解:由三視圖,得 ,
OB=3cm,0A=4cm,
由勾股定理,得AB= =5cm,
圓錐的側(cè)面積 ×6π×5=15πcm2 ,
圓錐的底面積π×( 2=9πcm,
圓錐的表面積15π+9π=24π(cm2),
故選:D.
根據(jù)三視圖,可得幾何體是圓錐,根據(jù)勾股定理,可得圓錐的母線長,根據(jù)扇形的面積公式,可得圓錐的側(cè)面積,根據(jù)圓的面積公式,可得圓錐的底面積,可得答案.本題考查了由三視圖判斷幾何體,利用三視圖得出圓錐是解題關(guān)鍵,注意圓錐的側(cè)面積等于圓錐的底面周長與母線長乘積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,田亮同學(xué)用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學(xué)知識(shí)是(  )
A.垂線段最短
B.經(jīng)過一點(diǎn)有無數(shù)條直線
C.經(jīng)過兩點(diǎn),有且僅有一條直線
D.兩點(diǎn)之間,線段最短

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕產(chǎn)銷公司A品牌產(chǎn)銷線,2015年的銷售量為9.5萬份,平均每份獲利1.9元,預(yù)計(jì)以后四年每年銷售量按5000份遞減,平均每份獲利按一定百分?jǐn)?shù)逐年遞減;受供給側(cè)改革的啟發(fā),公司早在2104年底就投入資金10.89萬元,新增一條B品牌產(chǎn)銷線,以滿足市場(chǎng)對(duì)蛋糕的多元需求,B品牌產(chǎn)銷線2015年的銷售量為1.8萬份,平均每份獲利3元,預(yù)計(jì)以后四年銷售量按相同的份數(shù)遞增,且平均每份獲利按上述遞減百分?jǐn)?shù)的2倍逐年遞增;這樣,2016年,A、B兩品牌產(chǎn)銷線銷售量總和將達(dá)到11.4萬份,B品牌產(chǎn)銷線2017年銷售獲利恰好等于當(dāng)初的投入資金數(shù).
(1)求A品牌產(chǎn)銷線2018年的銷售量;
(2)求B品牌產(chǎn)銷線2016年平均每份獲利增長的百分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是
①EF= OE;②S四邊形OEBF:S正方形ABCD=1:4;③BE+BF= OA;④在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE= ;⑤OGBD=AE2+CF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愛好思考的小茜在探究兩條直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
【特例探究】

(1)如圖1,當(dāng)tan∠PAB=1,c=4 時(shí),a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= , b=;
(2)【歸納證明】請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.
(3)【拓展證明】如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3 ,AB=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計(jì)劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價(jià)是每1千克3元,乙種飲料銷售價(jià)是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是(  )

A.
B.
C.1
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案