【題目】如圖,在⊙O中,點(diǎn)P為直徑BA延長(zhǎng)線上一點(diǎn),PD切⊙O于點(diǎn)D、過(guò)點(diǎn)BBHPH,點(diǎn)H為垂足,BH交⊙O于點(diǎn)C,連接BD,CD.

(1)求證:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直徑的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)4;

【解析】

(1)利用切線性質(zhì)得OD⊥PH,則可證明BH∥OD,利用平行線的性質(zhì)得∠2=∠3,加上∠1=∠3,從而得到∠1=∠2;
(2)連接OC,如圖,先證明△OCB為等邊三角形得到∠BOC=60°,再利用平行線的性質(zhì)得到∠BOD=120°,所以∠DOC=60°,然后判定△OCD為等邊三角形,則OD=CD=2,從而得到⊙O的直徑的長(zhǎng).

(1)證明:∵PD切⊙O于點(diǎn)D,

∴OD⊥PH,

∵BH⊥PH,

∴BH∥OD,

∴∠2=∠3,

∵OD=OB,

∴∠1=∠3,

∴∠1=∠2,

∴BD平分∠ABH;

(2)解:連接OC,如圖,

∵∠1=30°,

∴∠2=∠3=30°,

∴∠OBC=60°,

∴△OCB為等邊三角形,

∴∠BOC=60°,

∵BC∥OD,

∴∠BOD=180°﹣∠OBC=120°,

∴∠DOC=60°,

OC=OD,

∴△OCD為等邊三角形,

∴OD=CD=2,

∴⊙O的直徑的長(zhǎng)為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:

銷(xiāo)售單價(jià)(元)

x

銷(xiāo)售量y(件)

    

銷(xiāo)售玩具獲得利潤(rùn)w(元)

    

2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元.

3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= ,EFA=60°,則四邊形A′B′EF的周長(zhǎng)是(

A. 1+3 B. 3+ C. 4+ D. 5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,度,,的中點(diǎn),。求證:

1

2為等腰直角三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN⊙O的直徑,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),如果PA+PB的最小值為,那么⊙O的直徑等于(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若△ABC內(nèi)接于⊙O,OC=6cm,AC=cm,則∠B等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點(diǎn)C、F為頂點(diǎn)作矩形CDEF,頂點(diǎn)D、E在⊙O的劣弧上,OMDE于點(diǎn)M.試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,點(diǎn)P為直徑BA延長(zhǎng)線上一點(diǎn),PD切⊙O于點(diǎn)D、過(guò)點(diǎn)BBHPH,點(diǎn)H為垂足,BH交⊙O于點(diǎn)C,連接BD,CD.

(1)求證:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連PA、PB、PC.

(1)將PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°PCB的位置(如圖1).

設(shè)AB的長(zhǎng)為a,PB的長(zhǎng)為bb<a),求PAB旋轉(zhuǎn)到PCB的過(guò)程中邊PA所掃過(guò)區(qū)域(圖1中陰影部分)的面積;

若PA=2,PB=4,APB=135°,求PC的長(zhǎng).

(2)如圖2,若PA2+PC2=2PB2,請(qǐng)說(shuō)明點(diǎn)P必在對(duì)角線AC上.

查看答案和解析>>

同步練習(xí)冊(cè)答案