【題目】如圖,在RtABC中,∠ACB=90°,DAB的中點,過點AAE//BC與過點DCD的垂線交于點E.

1)如圖1,若CEAD于點F,BC=6,∠B=30°,求AE的長

2)如圖2,求證AE+CE=BC

【答案】12;(2)見詳解.

【解析】

1)由點DAB中點,∠B=30°得到△ACD是等邊三角形,由30°角所對直角邊等于斜邊的一半,得到AC=,由BC=6,即可得到AC=,同理可計算得到;

2)延長ED,交BC于點G,可證△ADE≌△BDG,得到AE=BG,然后證明△CDE≌△CDG,得到CE=CG,然后即可得到AE+CE=BC.

解:(1)在RtABC中,∠ACB=90°,DAB的中點,

AD=BD=CD,

∵∠B=30°,

∴∠BCD=B=30°,∠BAC=60°

∴△ACD是等邊三角形.

AC=AD=

AE//BCCDDE,

∴∠CAE=ACB=90°,∠CDE=90°,

∴△ACE≌△DCE

∴∠ACE=DCE=30°,

CE=2AE.

RtABC中,,BC=6,

,

同理,在RtACE中,

解得:,

AE的長度為:2.

2)如圖,延長ED,交BC于點G,則

∵點DAB的中點,

AD=BD,

AEBC

∴∠EAD=GBD,

∵∠ADE=BDG,

∴△ADE≌△BDGASA),

AE=BG.DE=DG

CDED,

∴∠CDE=CDG=90°,

CD=CD

∴△CDE≌△CDGSAS,

CE=CG,

BC=BG+CG

BC=AE+EC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.

(1)畫出△ABC關(guān)于直線MN對稱的△A1B1C1;

(2)直接寫出AA1的長度;

(3)如圖2,A、C是直線MN同側(cè)固定的點,D是直線MN上的一個動點,在直線MN上畫出點D,使AD+DC最。ūA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作與探究:已知:點O為直線AB上一點,∠COD90°,射線OE平分∠AOD

1)如圖①所示,若∠COE20°,則∠BOD      °

2)若將∠COD繞點O旋轉(zhuǎn)至圖②的位置,試判斷∠BOD和∠COE的數(shù)量關(guān)系,并說明理由;

3)若將∠COD繞點O旋轉(zhuǎn)至圖③的位置,繼續(xù)探究∠BOD和∠COE的數(shù)量關(guān)系,請直接寫出∠BOD和∠COE之間的數(shù)量關(guān)系:      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若干個完全相同的小正方體堆成一個幾何體.

1)從正面、左面、上面觀察該幾何體,分別在所給的網(wǎng)格圖中畫出你所看到的形狀圖;

2)若現(xiàn)在你手頭還有一些相同的小正方體,如果保持從左面、上面觀察該幾何體得到的形狀圖不變,那么在這個幾何體上最多可以再添加多少個小正方體?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,BC,其中點A到點B的距離為2,點C到點B的距離為8,如圖所示:設(shè)點A,B,C所對應(yīng)的數(shù)的和是m

1)若以B為原點,則點C所對應(yīng)的數(shù)是   ;若以C為原點,則m的值是   

2)若原點O在圖中數(shù)軸上,且點C到原點O的距離為4,求m的值.

3)動點PA點出發(fā),以每秒3個單位長度的速度向終點C移動,動點Q同時從B點出發(fā),以每秒2個單位的速度向終點C移動,運動時間為t秒,求PQ兩點間的距離?(用含t的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長;

(3)O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寒假就要到了,未來充實寒假生活,張鑫與李亮打算一起到新華書店買書,

下面是張鑫與李亮的對話內(nèi)容:

根據(jù)他們倆的對話內(nèi)容,列方程解答下列問題:

1)如果張鑫上次買書沒有辦卡,他需要付多少錢?

2)在這個書店買書,什么情況下,辦卡比補辦卡便宜?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明打算用一張半圓形的紙(如圖)做一個圓錐.在制作過程中,他先將半圓剪成面積比為1∶2的兩個扇形.

(1)請你在圖中畫出他的裁剪痕跡(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);

(2)若半圓半徑是3,小明用裁出的大扇形作為圓錐的側(cè)面,請你求出小明所做的圓錐的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點.的坐標為(3,0),軸左側(cè)的一點.若以為頂點的四邊形為平行四邊形.則點的坐標為_____________.

查看答案和解析>>

同步練習冊答案