【題目】綜合與探究問(wèn)題背景數(shù)學(xué)活動(dòng)課上,老師將一副三角尺按圖(1)所示位置擺放,分別作出∠AOC,∠BOD的平分線OM、ON,然后提出如下問(wèn)題:求出∠MON的度數(shù).
特例探究“興趣小組”的同學(xué)決定從特例入手探究老師提出的問(wèn)題,他們將三角尺分別按圖2、圖3所示的方式擺放,OM和ON仍然是∠AOC和∠BOD的角平分線.其中,按圖2方式擺放時(shí),可以看成是ON、OD、OB在同一直線上.按圖3方式擺放時(shí),∠AOC和∠BOD相等.
(1)請(qǐng)你幫助“興趣小組”進(jìn)行計(jì)算:圖2中∠MON的度數(shù)為 °.圖3中∠MON的度數(shù)為 °.
發(fā)現(xiàn)感悟
解決完圖2,圖3所示問(wèn)題后,“興趣小組”又對(duì)圖1所示問(wèn)題進(jìn)行了討論:
小明:由于圖1中∠AOC和∠BOD的和為90°,所以我們?nèi)菀椎玫健?/span>MOC和∠NOD的和,這樣就能求出∠MON的度數(shù).
小華:設(shè)∠BOD為x°,我們就能用含x的式子分別表示出∠NOD和∠MOC度數(shù),這樣也能求出∠MON的度數(shù).
(2)請(qǐng)你根據(jù)他們的談話內(nèi)容,求出圖1中∠MON的度數(shù).
類(lèi)比拓展
受到“興趣小組”的啟發(fā),“智慧小組”將三角尺按圖4所示方式擺放,分別作出∠AOC、∠BOD的平分線OM、ON,他們認(rèn)為也能求出∠MON的度數(shù).
(3)你同意“智慧小組”的看法嗎?若同意,求出∠MON的度數(shù);若不同意,請(qǐng)說(shuō)明理由.
【答案】(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣x°)+x°+(45°﹣x°)=135°.
【解析】
(1)由題意可得,∠MON=×90°+90°,∠MON=∠AOC+∠BOD+∠COD,即可得出答案;
(2)根據(jù)“OM和ON是∠AOC和∠BOD的角平分線”可求出∠MOC+∠NOD,又∠MON=(∠MOC+∠NOD)+∠COD,即可得出答案;
(3)設(shè)∠BOC=x°,則∠AOC=180°﹣x°,∠BOD=90°﹣x°,進(jìn)而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.
解:(1)圖2中∠MON=×90°+90°=135°;圖3中∠MON=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD)+90°=90°+90°=135°;
故答案為:135,135;
(2)∵∠COD=90°,
∴∠AOC+∠BOD=180°﹣∠COD=90°,
∵OM和ON是∠AOC和∠BOD的角平分線,
∴∠MOC+∠NOD=∠AOC+∠BOD=(∠AOC+∠BOD)=45°,
∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;
(3)同意,
設(shè)∠BOC=x°,則∠AOC=180°﹣x°,∠BOD=90°﹣x°,
∵OM和ON是∠AOC和∠BOD的角平分線,
∴∠MOC=∠AOC=(180°﹣x°)=90°﹣x°,
∠BON=∠BOD=(90°﹣x°)=45°﹣x°,
∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣x°)+x°+(45°﹣x°)=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱(chēng)為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱(chēng)為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用火柴棒按如圖所示方式搭圖形,按照這種方式搭下去,搭第2020個(gè)圖形需火柴棒的根數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中, DE是△ABC的中位線,DE∥BC,M是DE的中點(diǎn),CM的延長(zhǎng)線交AB于點(diǎn)N,則S△DMN∶S△CEM等于( )
A.1∶2B.1∶3C.1∶4D.1∶5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A.B兩地之間有一條筆直的公路,甲車(chē)從A地出發(fā)勻速向B地行駛,中途因有事停留了1小時(shí)后按原速駛向B地;在甲車(chē)出發(fā)的同時(shí)乙車(chē)從B地出發(fā)勻速向A地行駛,到達(dá)A地后,立即按原路原速返回到B地。兩車(chē)在行駛的過(guò)程中,甲乙兩車(chē)距A地的路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式如圖所示,請(qǐng)結(jié)合圖像回答下列問(wèn)題:
(1)在圖像的(_____)中填入正確的數(shù)值
(2)求甲車(chē)在中途因事停留后駛向B地過(guò)程中,y與x之間的函數(shù)關(guān)系式
(3)直接寫(xiě)出:乙車(chē)從A地出發(fā)多少小時(shí)后,甲.乙兩車(chē)分別到甲車(chē)中途停留地的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖將直角三角形ABC繞直角頂點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)后得到三角形A/B/C,連接AA/ ,若∠1=,則∠B的度數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藍(lán)莓加工廠每天生產(chǎn)A,B兩種品牌的藍(lán)莓酒共600瓶,每天投入成本26400元,其中A,B兩種品牌的藍(lán)莓酒每瓶的成本和利潤(rùn)如下表:
(1)該廠每天生產(chǎn)A、B兩種品牌的藍(lán)莓酒各多少瓶?
(2)該廠每天獲得利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l的解析式y=kx+3(k<0)與y軸交于A點(diǎn),
與x軸交于點(diǎn)B.點(diǎn)C的坐標(biāo)為(4,2).
(1)點(diǎn)A的坐標(biāo)為 ;
(2)若將△AOB沿直線l折疊,能否使點(diǎn)O與點(diǎn)C重合,若能求此時(shí)直線l的解析式;若不能,請(qǐng)說(shuō)明理由。
(3)若點(diǎn)C在直線l的下方,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想,我們不但可以用數(shù)來(lái)解決圖形問(wèn)題,同樣也可以用借助圖形來(lái)解決數(shù)量問(wèn)題,往往能出奇制勝,數(shù)軸和勾股定理是數(shù)形結(jié)合的典范.數(shù)軸上的兩點(diǎn)A和B所表示的數(shù)分別是和,則A,B兩點(diǎn)之間的距離;坐標(biāo)平面內(nèi)兩點(diǎn),,它們之間的距離.如點(diǎn),,則.表示點(diǎn)與點(diǎn)之間的距離,表示點(diǎn)與點(diǎn)和的距離之和.
(1)已知點(diǎn),,________;
(2)表示點(diǎn)和點(diǎn)之間的距離;
(3)請(qǐng)借助圖形,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com