【題目】如圖,已知A(3,0),B(0,﹣1),連接AB,過(guò)B點(diǎn)作AB的垂線段BC,使BA=BC,連接AC.

(1)如圖1,求C點(diǎn)坐標(biāo);

(2)如圖2,若P點(diǎn)從A點(diǎn)出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點(diǎn)P在線段OA上,求證:PA=CQ;

(3)在(2)的條件下若C、P,Q三點(diǎn)共線,求此時(shí)∠APB的度數(shù)及P點(diǎn)坐標(biāo).

【答案】(1)C點(diǎn)坐標(biāo)為(1,﹣4);(2)見(jiàn)解析;(3)P點(diǎn)坐標(biāo)為(1,0).

【解析】

(1)作CHy軸于H,證明ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點(diǎn)坐標(biāo);

(2)證明PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;

(3)根據(jù)C、P,Q三點(diǎn)共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點(diǎn)坐標(biāo).

(1)作CHy軸于H,

則∠BCH+CBH=90°,

ABBC,

∴∠ABO+CBH=90°,

∴∠ABO=BCH,

ABOBCH中,

∴△ABO≌△BCH,

BH=OA=3,CH=OB=1,

OH=OB+BH=4,

C點(diǎn)坐標(biāo)為(1,﹣4);

(2)∵∠PBQ=ABC=90°,

∴∠PBQ﹣ABQ=ABC﹣ABQ,即∠PBA=QBC,

PBAQBC中,

,

∴△PBA≌△QBC,

PA=CQ;

(3)∵△BPQ是等腰直角三角形,

∴∠BQP=45°,

當(dāng)C、P,Q三點(diǎn)共線時(shí),∠BQC=135°,

由(2)可知,PBA≌△QBC,

∴∠BPA=BQC=135°,

∴∠OPB=45°,

OP=OB=1,

P點(diǎn)坐標(biāo)為(1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在開(kāi)展“美麗廣西,清潔鄉(xiāng)村”的活動(dòng)中某鄉(xiāng)鎮(zhèn)計(jì)劃購(gòu)買A、B兩種樹(shù)苗共100棵,已知A種樹(shù)苗每棵30元,B種樹(shù)苗每棵90元.
(1)設(shè)購(gòu)買A種樹(shù)苗x棵,購(gòu)買A、B兩種樹(shù)苗的總費(fèi)用為y元,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)如果購(gòu)買A、B兩種樹(shù)苗的總費(fèi)用不超過(guò)7560元,且B種樹(shù)苗的棵數(shù)不少于A種樹(shù)苗棵數(shù)的3倍,那么有哪幾種購(gòu)買樹(shù)苗的方案?
(3)從節(jié)約開(kāi)支的角度考慮,你認(rèn)為采用哪種方案更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點(diǎn)M,AEBC交于點(diǎn)N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個(gè)結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請(qǐng)寫序號(hào),少選、錯(cuò)選均不得分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).

(1)求拋物線的解析式;
(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長(zhǎng)線上,連接QE.問(wèn):以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是∠ABC平分線,DEAB于E,AB=36cm,BC=24cm,S△ABC =144cm2,則DE的長(zhǎng)是( )

A. 4.8cm B. 4.5cm C. 4 cm D. 2.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣1)2016+2sin60°﹣|﹣ |+π0

查看答案和解析>>

同步練習(xí)冊(cè)答案