【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0).

(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標(biāo).

【答案】
(1)

解:設(shè)y=a(x+1)(x﹣6)(a≠0),

把B(5,﹣6)代入:a(5+1)(5﹣6)=﹣6,

a=1,

∴y=(x+1)(x﹣6)=x2﹣5x﹣6


(2)

解:存在,

如圖1,分別過P、B向x軸作垂線PM和BN,垂足分別為M、N,

設(shè)P(m,m2﹣5m﹣6),四邊形PACB的面積為S,

則PM=﹣m2+5m+6,AM=m+1,MN=5﹣m,CN=6﹣5=1,BN=5,

∴S=SAMP+S梯形PMNB+SBNC

= (﹣m2+5m+6)(m+1)+ (6﹣m2+5m+6)(5﹣m)+ ×1×6

=﹣3m2+12m+36

=﹣3(m﹣2)2+48,

當(dāng)m=2時,S有最大值為48,這時m2﹣5m﹣6=22﹣5×2﹣6=﹣12,

∴P(2,﹣12),


(3)

解:這樣的Q點一共有5個,連接Q3A、Q3B,

y=x2﹣5x﹣6=(x﹣ 2 ;

因為Q3在對稱軸上,所以設(shè)Q3 ,y),

∵△Q3AB是等腰三角形,且Q3A=Q3B,

由勾股定理得:( +1)2+y2=( ﹣5)2+(y+6)2,

y=﹣ ,

∴Q3 ,﹣ ).


【解析】(1)拋物線經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0),可利用兩點式法設(shè)拋物線的解析式為y=a(x+1)(x﹣6),代入B(5,﹣6)即可求得函數(shù)的解析式;(2)作輔助線,將四邊形PACB分成三個圖形,兩個三角形和一個梯形,設(shè)P(m,m2﹣5m﹣6),四邊形PACB的面積為S,用字母m表示出四邊形PACB的面積S,發(fā)現(xiàn)是一個二次函數(shù),利用頂點坐標(biāo)求極值,從而求出點P的坐標(biāo).(3)分三種情況畫圖:①以A為圓心,AB為半徑畫弧,交對稱軸于Q1和Q4 , 有兩個符合條件的Q1和Q4;②以B為圓心,以BA為半徑畫弧,也有兩個符合條件的Q2和Q5;③作AB的垂直平分線交對稱軸于一點Q3 , 有一個符合條件的Q3;最后利用等腰三角形的腰相等,利用勾股定理列方程求出Q3坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB∥CD,E是AB的中點,CE=DE.

(1)求證:∠AEC=∠BED
(2)求證:AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有兩個相等的實數(shù)根,求m的值,并求出此時方程的根;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的平方和等于136?若存在,請求出滿足條件的m值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標(biāo);
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A、B重合的一個動點,延長BP到點C,使PC=PB,D是AC的中點,連接PD、PO.

(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當(dāng)∠PBA的度數(shù)為時,四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈,銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500.
(1)設(shè)李明每月獲得利潤為w(元),求出w與x的函數(shù)關(guān)系式.
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?得最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P1 , P2 , P3 , P4均在坐標(biāo)軸上,且P1P2⊥P2P3 , P2P3⊥P3P4 , 若點P1 , P2的坐標(biāo)分別為(0,﹣1),(﹣2,0),則點P4的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,使點B,D重合,已知AB=3,AD=4,則 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF=
上面結(jié)論正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目 (被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛電視劇節(jié)目的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案