【題目】已知矩形ABCD中,AB=8cm,BC=16cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE,判斷四邊形AFCE的形狀,并說(shuō)明理由;
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),P點(diǎn)沿著A→F→B→A勻速運(yùn)動(dòng),Q點(diǎn)沿著C→D→E→C勻速運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中:
① 已知點(diǎn)P的速度為10cm/s,點(diǎn)Q的速度為8cm/s,運(yùn)動(dòng)時(shí)間為t秒,問(wèn)當(dāng)t為何值時(shí),點(diǎn)A,C,P,Q組成的四邊形為平行四邊形?
② 點(diǎn)P,Q的運(yùn)動(dòng)路程分別為a,b(單位:cm,ab≠0),問(wèn)當(dāng)a,b滿足怎樣的關(guān)系式時(shí),點(diǎn)A,C,P,Q組成的四邊形為平行四邊形?
【答案】(1)四邊形AFCE為菱形,見(jiàn)解析;(2)①t=s ;②a與b滿足的數(shù)量關(guān)系式是a+b=24(ab≠0)
【解析】
(1)先證明四邊形ABCD為平行四邊形,再根據(jù)對(duì)角線互相垂直平分的平行四邊形是菱形作出判定;
(2)①分情況討論可知,P點(diǎn)在BF上,Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;
②分3種情況討論,分別得出a+b=24,即可得出答案.
(1)四邊形AFCE為菱形
證明:∵四邊形ABCD是矩形
∴AD∥BC
∴∠CAD=∠ACB,∠AEF=∠CFE
∵EF垂直平分AC
∴OA=OC
∴△AOE≌△COF
∴OE=OF
∴四邊形AFCE為平行四邊形
又∵EF⊥AC
∴四邊形AFCE為菱形
(2)解:①當(dāng)P點(diǎn)在AF上時(shí),Q點(diǎn)在CD上,
此時(shí)A、C、P、Q四點(diǎn)不可能構(gòu)成平行四邊形
同理P點(diǎn)在AB上時(shí),Q點(diǎn)在DE或CE上,也不能構(gòu)成平行四邊形
因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形
∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA,
∵點(diǎn)P的速度為每秒10cm,點(diǎn)Q的速度為每秒8cm,運(yùn)動(dòng)時(shí)間為t秒
∴PC=CF+FP=AF+FP=10t,QA=24﹣8t
∴10t=24﹣8t
∴t=s
②由題意得,四邊形APCO是平行四邊形時(shí),點(diǎn)P、Q在互相平行的對(duì)應(yīng)邊上.分三種情況:
(i)如圖1,當(dāng)P點(diǎn)在AF上、Q點(diǎn)在CE上時(shí),
AP=CQ,即a=24﹣b,得a+b=24
(ii)如圖2,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在DE上時(shí),
AQ=CP,即24﹣b=a,得a+b=24
(iii)如圖3,當(dāng)P點(diǎn)在AB上、Q點(diǎn)在CD上時(shí),
AP=CQ,即24﹣a=b,得a+b=24
綜上所述,a與b滿足的數(shù)量關(guān)系式是a+b=24(ab≠0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),正方形的頂點(diǎn)、分別在軸與軸上,已知正方形邊長(zhǎng)為3,點(diǎn)為軸上一點(diǎn),其坐標(biāo)為,連接,點(diǎn)從點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿折線的方向向終點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒.
(1)連接,當(dāng)點(diǎn)在線段上運(yùn)動(dòng),且滿足時(shí),求直線的表達(dá)式;
(2)連接、,求的面積關(guān)于的函數(shù)表達(dá)式;
(3)點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)位置使得為等腰三角形,若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, , 平分,
交于點(diǎn),⊙O是的外接圓.
(1)求證: 是⊙O的切線;
(2)若, ,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠E=60°,AC=,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC中,AB=2,BC=4,D為BC邊上一點(diǎn),BD=1.
(1)求證:△ABD∽△CBA;
(2)在原圖上作DE∥AB交AC與點(diǎn)E,請(qǐng)直接寫出另一個(gè)與△ABD相似的三角形,并求出DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列結(jié)論:① BC平分∠ABE;② AC∥BE;③ ∠CBE+∠D=90°;④ ∠DEB=2∠ABC.其中正確結(jié)論的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長(zhǎng)線相交,交點(diǎn)分別為E、F,DF與AC交于點(diǎn)M,DE與BC交于點(diǎn)N。
(1)求證:△ADM∽△BND;
(2)在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中:
①探究三條線段CD、CE、CF之間的數(shù)量關(guān)系,并說(shuō)明理由;
②若CE=4,CF=2,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣3,2),B(﹣4,1),C(﹣2,0).
(1)若將△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,請(qǐng)畫出平移后的△A1B1C1;
(2)若△A2B2C2與△ABC是中心對(duì)稱圖形,則對(duì)稱中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn);
(2)若該拋物線的對(duì)稱軸為直線x=.
①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com